
STATIC RANDOM-ACCESS MEMORIES

- Static Fully Decoded RAM's Organized as 256 Words of One Bit Each
- Schottky-Clamped for High Performance
- Choice of Three-State or Open-Collector Outputs
- Compatible with Most TTL and I²L Circuits
- Chip-Select Input Simplify External Decoding
- Typical Performance:

Read Access Time . . . 42 ns Power dissipation . . . 500 mW

description

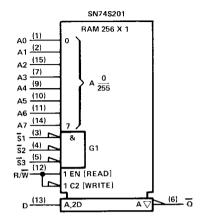
These 256-bit active-element memories are monolithic transistor-transistor logic (TTL) arrays organized as 256 words of one bit. They are fully decoded and have three chip-select inputs to simplify decoding required to achieve expanded system organizations.

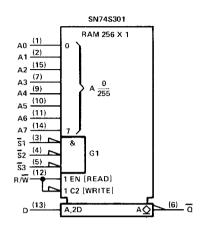
write cycle

The information applied at the data input is written into the selected location when the chip-select inputs and the write-enable input are low. While the write-enable input is low, the 'S201 outputs are in the high-impedance state and the 'S301 outputs are off. When a number of outputs are bus-connected, this high-impedance or off state will neither load nor drive the bus line, but it will allow the bus line to be driven by another active output or a passive pull-up.

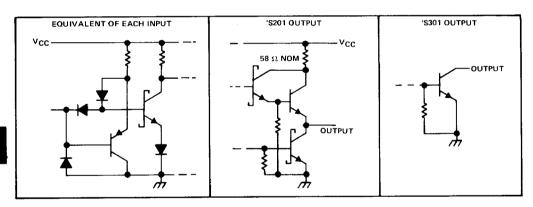
read cycle

The stored information (complement of information applied at the data input during the write cycle) is available at the output when the write-enable input is high and the three chip-select inputs is low. When any one of the chip-select inputs are high, the 'S201 outputs will be in the high-impedance state and the 'S301 outputs will be off.


FUNCTION TABLE


FUNCTION	INPUTS		'S201	'S301		
	CHIP SELECT WRITE ENABLE S R/W		OUTPUT (Q)	OUTPUT (Q)		
Write	L	L	High Impedance	Off		
Read	L	Н	Complement of Data Entered	Complement of Data Entered		
Inhibit	Н	X	High Impedance	Off		

H = high level, L = low level, X = irrelevant


For chip-select: $L \equiv all \ \overline{S}i$ inputs low, $H \equiv all \ \overline{S}i$ inputs high

logic symbols

schematics of inputs and outputs

၎

RAM

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)	/
Input voltage	/
Off-State output voltage 5.5 \	/
Operating free-air temperature range	2
Storage temperature range65°C to 150°C	2

SN74S201, SN74S301 256-BIT HIGH-PERFORMANCE RANDOM-ACCESS MEMORIES

recommended operating conditions

		SN74S201		SN74S301			UNIT		
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT	
Supply voltage, V _{CC} (see Note 1)		4.75	5	5.25	4.75	5	5.25	V	
High-level ou	tput voltage, VOH						5.5	V	
High-level ou	tput current, IOH			- 10.3				mA	
Low-level output current, IQL				16			16	mA	
Width of write pulse (write enable low), tw(wr)		65			65		_	ns	
ин	Address before write pulse, t _{Su(ad)}	01			Οţ				
Setup time	Data before end of write pulse, t _{su(da)}	65↑			65↑			ns	
	Chip-select before end of write pulse, t _{Su} (\$\overline{S}\$)	65↑			65↑			1	
	Address after write pulse, th(ad)	01			01				
Hold time	Data after write pulse, th(da)	01			01			ns	
	Chip-select after write pulse, th(S)	01			01]	
Operating fre	e-air temperature, TA	0		70	0		70	°C	

[†] The arrow indicates the transition of the write-enable input used for reference: I for the low-to-high transition, I for the high-to-low transition.

NOTE 1: Voltage values are with respect to network ground terminal.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				'S201		'S301			
PARAMETER		TEST CONDITIONS [†]		TYP [‡]	MAX	MIN	TYP‡	MAX	UNIT
ViH	High-level input voltage		2			2			V
VIL	Low-level input voltage				0.8			0.8	V
VIK	Input clamp voltage	$V_{CC} = MIN$, $I_{\parallel} = -18 \text{ mA}$			- 1.2			- 1.2	٧
∨он	High-level output voltage	V_{CC} = MIN, V_{IH} = 2 V, V_{IL} = 0.8 V, I_{OH} = MAX	2.4						٧
VOL	Low-level output voltage	VCC = MIN, VIH = 2 V, IOL = 16 mA			0.45			0.45	V
юн	High-level output current	$V_{CC} = MIN$, $V_{IH} = 2 \text{ V}$, $V_{O} = 2.4 \text{ V}$ $V_{IL} = 0.8 \text{ V}$ $V_{O} = 5.5 \text{ V}$						40 100	μΑ
lozh	Off-state output current, high-level voltage applied	$V_{CC} = MAX$, $V_{IH} = 2 V$, $V_{IL} = 0.8 V$, $V_{OH} = 2.4 V$			40				μА
I _{OZL}	Off-state output current, low-level voltage applied	$V_{CC} = MAX, V_{IH} = 2 V,$ $V_{IL} = 0.8 V, V_{OL} = 0.5 V$			- 40				μΑ
l _I	Input current at maximum input voltage	V _{CC} = MAX, V ₁ = 5.5 V			1			1	mA
Iн .	High-level input current	$V_{CC} = MAX$, $V_1 = 2.7 V$			25			25	μΑ
IIL.	Low-level input current	V _{CC} - MAX, V _I = 0.5 V			- 250			- 250	μΑ
los	Short-circuit output current §	V _{CC} - MAX	- 30		- 100				mA
lcc	Supply current	V _{CC} = MAX, See Note 2		100	140	<u> </u>	100	140	mA

[†]For conditions shown as MIN or MAX use the appropriate value specified under recommended operating conditions.

 $^{^{\}ddagger}$ All typical values are at V_{CC} = 5 V, T_A = 25 °C.

[§]Duration of the short circuit should not exceed one second.

NOTE 2: I_{CC} is measured with all chip-select inputs grounded, all other inputs at 4.5 V, and the output open.

'\$201 switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MiN	TYP [‡]	MAX	UNIT
ta(ad)	ta(S) Access time from chip select (select time)		C ₁ = 30 pF,		42	65	ns
ta(S)			See Note 3		13	30	ns
tSR					20	40	ns
tPXZ	Disable time from high or low level	From S	$C_{L} = 5 pF$,			20	ns
	Disable time from high or low level	From R/W	See Note 3	"	20	1 ''3	

'S301 switching characteristics over recommended operating ranges of TA and VCC (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	MIN TYP‡	MAX	UNIT
ta(ad)	a(S) Access time from chip enable (enable time)		C _I = 30 pF,	42	65	ns
ta(S)			$R_{L1} = 300 \Omega,$ $R_{L2} = 600 \Omega,$	13	30	ns
tSR				20	40	ns
	Propagation delay time, low-to-high-level	From S	See Note 3	8	20	ns
tPLH	output (disable time) From R/W		See Mote 3	15	35	1 ''s

 $^{\ddagger}AII$ typical values are at VCC = 5 V, TA = 25 °. NOTE 2: Load circuits and voltage waveforms are shown in Section 1.