WIMA SMD-PET

Metallized Polyester (PET) SMD Film Capacitors with Box Encapsulation

Special Features

- Size codes 1812, 2220, 2824, 4030, 5040 and 6054 with PET and encapsulated
- Operating temperature up to 100° C
- Self-healing
- According to RoHS 2011/65/EU

Typical Applications

For general DC-applications e.g.

- By-pass
- Blocking
- Coupling and decoupling
- Timing

Construction

Dielectric:

Polyethylene-terephthalate (PET) film Capacitor electrodes: Vacuum-deposited Internal construction:

*	— Plastic film
	 Vacuum-deposited electrode Metal contact layer (schoopage)
	 Terminating plate

Encapsulation:

Solvent-resistant, flame-retardant plastic case, UL 94 V-0

Terminations:

Tinned plates.

Marking:

Box colour: Black.

Electrical Data

Capacitance range: 0.01 μF to 6.8 μF **Rated voltages:** 63 VDC, 100 VDC, 250 VDC, 400 VDC, 630 VDC, 1000 VDC

Capacitance tolerances: ±20%, ±10% (±5% available subject to special enquiry)

Operating temperature range: -55° C to +100° C (+125° C available

subject to special enquiry) Climatic test category: 55/100/21 according to IEC for size codes 1812 to 2824

55/100/56 according to IEC for size codes 4030 to 6054

Insulation resistance at +20° C:

U _r	U _{test}	C ≤ 0.33 µF	0.33 µF < C ≤ 6.8 µF
63 VDC 100 VDC			≥ 1250 sec (MΩ × µF) (mean value: 3000 sec)
≥ 250 VDC	100 V	\geq 1 x 10 ⁴ MΩ (mean value: 5 x 10 ⁴ MΩ)	\geq 3000 sec (M $\Omega \times \mu$ F) (mean value: 10000 sec)

Test voltage: 1.6 U_r, 2 sec.

A voltage derating factor of 1.25 % per K

must be applied from +85° C for DC

voltages and from +75° C for AC

Operational life > 300 000 hours

Failure rate < 2 fit (0.5 x U_r and 40° C)

Voltage derating:

voltages

Reliability:

Measuring time: 1 min.

Dissipation factors at +20° C: tan δ

at f	C ≤ 0.1 µF	0.1 µF < C ≤ 1.0 µF	C > 1.0 µF
1 kHz	\leq 8 x 10 ⁻³	≤ 8 x 10 ⁻³	\leq 10 x 10 ⁻³
10 kHz	≤ 15 x 10 ⁻³	≤ 15 x 10 ⁻³	-
100 kHz	≤ 30 x 10 ⁻³	-	-

Maximum pulse rise time: for pulses equal to the rated voltage

Capacitance		Pulse	e rise time V	/µsec									
μF		max. operation/test											
μ.	63 VDC	100 VDC	250 VDC	400 VDC	630 VDC	1000 VDC							
0.01 0.022	30/300	35/350	40/400	35/350	40/400	50/500							
0.033 0.068	20/200	20/200	40/400	21/210	25/250	32/320							
0.1 0.22	10/100	10/100	12/120	14/140	17/170	-							
0.33 0.68	8/80	6/60	9/90	10/100	-	-							
1.0 2.2	3.5/35	4/40	7/70	-	-	-							
3.3 6.8	3/30	3/30	-	-	-	-							

Dip Solder Test/Processing

Resistance to soldering heat:

Test Tb in accordance with DIN IEC 60068-2-58/DIN EN 60384-19. Soldering bath temperature max. 260° C. Soldering duration max. 5 sec. Change in capacitance Δ C/C < 5%.

Soldering process:

Re-flow soldering (see temperature/time graphs page 12).

Packing

Available taped and reeled in 12 mm blister pack.

Detailed taping information and graphs at the end of the catalogue.

For further details and graphs please refer to Technical Information.

WIMA SMD-PET

Continuation

General Data

		63	3 VDC/40 VAC*		10	0 VDC/63 VAC*		25	0 VDC/160 VAC*
Capacitance	Size code	H ± 0.3	Part number	Size code	H ± 0.3	Part number	Size code	H ± 0.3	Part number
0.01 µF	1812	3.0	SMDTC02100KA00	1812	3.0	SMDTD02100KA00	1812	4.0	SMDTF02100KB00
0.01 µ	2220	3.5	SMDTC02100QA00	2220	3.5	SMDTD02100QA00	2220	3.5	SMDTF02100QA00
	2824	3.0	SMDTC02100TA00	2824	3.0	SMDTD02100TA00	2824	3.0	SMDTF02100TA00
0.015 "	1812	3.0	SMDTC02150KA00	1812	3.0	SMDTD02150KA00	1812	4.0	SMDTF02150KB00
0.010 "	2220	3.5	SMDTC02150QA00	2220	3.5	SMDTD02150QA00	2220	3.5	SMDTF02150QA00
	2824	3.0	SMDTC02150TA00	2824	3.0	SMDTD021500QA00	2824	3.0	SMDTF02150TA00
0.000	1812	3.0	SMDTC0220KA00	1812	3.0	SMDTD021301A00	1812	4.0	SMDTF02220KB00
0.022 "	2220	3.5	SMDTC02220RA00	2220	3.5	SMDTD02220RA00 SMDTD02220QA00	2220	3.5	SMDTF02220R600
	2824	3.0	SMDTC02220QA00	2824	3.0	SMDTD02220QA00	2824	3.0	SMDTF02220QA00
0.022									
0.033 "	1812	3.0 3.5	SMDTC02330KA00	1812	3.0	SMDTD02330KA00	2220 2824	3.5	SMDTF02330QA00
	2220 2824	3.5	SMDTC02330QA00	2220 2824	3.5	SMDTD02330QA00	2824 4030	3.0 5.0	SMDTF02330TA00 SMDTF02330VA00
0.047			SMDTC02330TA00			SMDTD02330TA00			
0.047 "	1812	3.0	SMDTC02470KA00	1812	3.0	SMDTD02470KA00	2220	3.5	SMDTF02470QA00
	2220	3.5	SMDTC02470QA00	2220	3.5	SMDTD02470QA00	2824	3.0	SMDTF02470TA00
	2824	3.0	SMDTC02470TA00	2824	3.0	SMDTD02470TA00	4030	5.0	SMDTF02470VA00
0.068 "	1812	3.0	SMDTC02680KA00	1812	3.0	SMDTD02680KA00	2220	3.5	SMDTF02680QA00
	2220	3.5	SMDTC02680QA00	2220	3.5	SMDTD02680QA00	2824	3.0	SMDTF02680TA00
	2824	3.0	SMDTC02680TA00	2824	3.0	SMDTD02680TA00	4030	5.0	SMDTF02680VA00
0.1 µF	1812	3.0	SMDTC03100KA00	1812	3.0	SMDTD03100KA00	2220	3.5	SMDTF03100QA00
	2220	3.5	SMDTC03100QA00	2220	3.5	SMDTD03100QA00	2824	5.0	SMDTF03100TB00
	2824	3.0	SMDTC03100TA00	2824	3.0	SMDTD03100TA00	4030	5.0	SMDTF03100VA00
0.15 "	1812	3.0	SMDTC03150KA00	1812	4.0	SMDTD03150KB00	2220	4.5	SMDTF03150QB00
	2220	3.5	SMDTC03150QA00	2220	3.5	SMDTD03150QA00	2824	5.0	SMDTF03150TB00
	2824	3.0	SMDTC03150TA00	2824	3.0	SMDTD03150TA00	4030	5.0	SMDTF03150VA00
0.22 "	1812	3.0	SMDTC03220KA00	1812	4.0	SMDTD03220KB00	2220	4.5	SMDTF03220QB00
	2220	3.5	SMDTC03220QA00	2220	3.5	SMDTD03220QA00	2824	5.0	SMDTF03220TB00
	2824	3.0	SMDTC03220TA00	2824	3.0	SMDTD03220TA00	4030	5.0	SMDTF03220VA00
0.33 "	1812	4.0	SMDTC03330KB00	2220	4.5	SMDTD03330QB00	2824	5.0	SMDTF03330TB00
	2220	3.5	SMDTC03330QA00	2824	5.0	SMDTD03330TB00	4030	5.0	SMDTF03330VA00
	2824	3.0	SMDTC03330TA00	4030	5.0	SMDTD03330VA00	5040	6.0	SMDTF03330XA00
0.47 "	1812	4.0	SMDTC03470KB00	2220	4.5	SMDTD03470QB00	4030	5.0	SMDTF03470VA00
	2220	3.5	SMDTC03470QA00	2824	5.0	SMDTD03470TB00	5040	6.0	SMDTF03470XA00
	2824	3.0	SMDTC03470TA00	4030	5.0	SMDTD03470VA00			
0.68 "	2220	4.5	SMDTC03680QB00	2824	5.0	SMDTD03680TB00	5040	6.0	SMDTF03680XA00
	2824	3.0	SMDTC03680TA00	4030	5.0	SMDTD03680VA00			
	4030	5.0	SMDTC03680VA00	5040	6.0	SMDTD03680XA00			
1.0 µF	2220	4.5	SMDTC04100QB00	2824	5.0	SMDTD04100TB00	6054	7.0	SMDTF04100YA00
	2824	3.0	SMDTC04100TA00	4030	5.0	SMDTD04100VA00			
	4030	5.0	SMDTC04100VA00	5040	6.0	SMDTD04100XA00			
1.5 "	2824	5.0	SMDTC04150TB00	4030	5.0	SMDTD04150VA00			
	4030	5.0	SMDTC04150VA00	5040	6.0	SMDTD04150XA00			
2.2 "	2824	5.0	SMDTC04220TB00	5040	6.0	SMDTD04220XA00			
	4030	5.0	SMDTC04220VA00						
3.3 "	4030	5.0	SMDTC04330VA00	5040	6.0	SMDTD04330XA00		Davat	
								Parf	number completion:
								Toler	rance: 20 % = M
4.7 "	5040	6.0	SMDTC04470XA00	6054	7.0	SMDTD04470YA00			10 % = K
									5 % = J
								Pack	ing: bulk = S
6.8 "	6054	7.0	SMDTC04680YA00						ength: none $= 00$
									d version see page 127.
								labe	a version see page 127.
* AC valtage	(_ 50 Ц	- 14.							

* AC voltage: f = 50 Hz; 1.4 x U_{rms} + UDC $\leq U_r$

Dims. in mm.

Rights reserved to amend design data without prior notification.

WIMA SMD-PET

Continuation

General Data

		40	0 VDC/200 VAC*		63	0 VDC/300 VAC*		100	00 VDC/400 VAC*
Capacitance	Size code	Н ± 0.3	Part number	Size code	H ± 0.3	Part number	Size code	Н ± 0.3	Part number
0.01 µF	2824 4030	3.0 5.0	SMDTG02100TA00 SMDTG02100VA00	4030	5.0	SMDTJ02100VA00			
0.015 "	2824 4030	3.0 5.0	SMDTG02150TA00 SMDTG02150VA00	4030	5.0	SMDTJ02150VA00	5040	6.0	SMDTO12150XA00
0.022 "	2824 4030	3.0 5.0	SMDTG02220TA00 SMDTG02220VA00	5040	6.0	SMDTJ02220XA00	5040	6.0	SMDTO12220XA00
0.033 "	2824 4030	5.0 5.0	SMDTG02330TB00 SMDTG02330VA00	5040	6.0	SMDTJ02330XA00	5040	6.0	SMDTO12330XA00
0.047 "	2824 4030	5.0 5.0	SMDTG02470TB00 SMDTG02470VA00	5040	6.0	SMDTJ02470XA00	6054	7.0	SMDTO12470YA00
0.068 "	4030 5040	5.0 6.0	SMDTG02680VA00 SMDTG02680XA00	5040	6.0	SMDTJ02680XA00			
0.1 µF	4030 5040	5.0 6.0	SMDTG03100VA00 SMDTG03100XA00	6054	7.0	SMDTJ03100YA00			
0.15 "	4030 5040	5.0 6.0	SMDTG03150VA00 SMDTG03150XA00	6054	7.0	SMDTJ03150YA00			
0.22 "	5040	6.0	SMDTG03220XA00	6054	7.0	SMDTJ03220YA00			
0.33 "	5040	6.0	SMDTG03330XA00						
0.47 "	6054	7.0	SMDTG03470YA00						

* AC voltage: f = 50 Hz; 1.4 x U_{rms} + UDC \leq U_r

Dims. in mm.

Size code	L ±0.3	₩ ±0.3	d	a min.	b min.	c max.
1812	4.8	3.3	0.5	1.2	3.5	3.5
2220	5.7	5.1	0.5	1.2	4	4.5
2824	7.2	6.1	0.5	1.2	4	6.5
4030	10.2	7.6	0.5	2.5	6	9
5040	12.7	10.2	0.7	2.5	6	11.5
6054	15.3	13.7	0.7	2.5	6	14

Part number	completion:
Tolerance:	20 % = M
	10% = K
	5% = J
Packing:	bulk = S
Pin length:	none = 00
Taped version	on see page 127.

Rights reserved to amend design data without prior notification.

Recommendation for Processing and Application of SMD Capacitors

Layout Form

The components can generally be positioned on the carrier material as desired. In order to prevent soldering shadows or ensure regular temperature distribution, extreme concentration of the components should be avoided. In practice, it has proven best to keep a minimum distance of the soldering surfaces between two WIMA SMDs of twice the height of the components.

Solder Pad Recommendation

Size	L	W	d	а	b	С
code	± 0.3	± 0.3		min.	min.	max.
1812	4.8	3.3	0.5	1.2	3.5	3.5
2220	5.7	5.1	0.5	1.2	4	4.5
2824	7.2	6.1	0.5	1.2	4	6.5
4030	10.2	7.6	0.5	2.5	6	9
5040	12.7	10.2	0.7	2.5	6	11.5
6054	15.3	13.7	0.7	2.5	6	14

The solder pad size recommendations given for each individual series are to be understood as minimum dimensions which can at any time be adjusted to the layout form.

Processing

The processing of SMD components

- assembling

- soldering
- electrical final inspection/ calibrating

must be regarded as a complete process. The soldering of the printed circuit board, for example, can constitute considerable stress on all the electronic components. The manufacturer's instructions on the processing of the components are mandatory.

Soldering Process

Temperature/time graph for the permissible processing temperature of the WIMA SMD film capacitor for typical convection soldering processes.

Due to versatile procedures exact processing parameters for re-flow soldering processes cannot be specified. The graph depicted is to be understood as a recommendation to help establishing a suitable soldering profile fulfilling the requirements in practice at the user. During processing a max. temperature of $T=210^{\circ}$ C inside the component should not be exceeded. Due to the differing heat absorption the length of the soldering process should be kept as short as possible for smaller size codes.

SMD Handsoldering

WIMA SMD capacitors with plastic film dielectric are generally suitable for handsoldering, e.g. for lab purposes, with a soldering iron where, however, similar to automated soldering processes, a certain duration and temperature should not be exceeded. These parameters are dependent on the physical size of the components and the relevant heat absorption involved. The below data are to be regarded as guideline values and should serve to avoid damage to the dielectric caused by excessive heat during the soldering process. The soldering quality depends on the tool used and on the skill and experience of the person with the soldering iron in hand.

Size code	Temperature °C / °F	Time duration
1812 2220 2824 4030 5040	250 / 482 250 / 482 260 / 500 260 / 500 260 / 500	2 sec plate 1 / 5 sec off / 2 sec plate 2 3 sec plate 1 / 5 sec off / 3 sec plate 2 3 sec plate 1 / 5 sec off / 3 sec plate 2 5 sec plate 1 / 5 sec off / 5 sec plate 2 5 sec plate 1 / 5 sec off / 5 sec plate 2
6054	260 / 500	5 sec plate 1 / 5 sec off / 5 sec plate 2

Recommendation for Processing and Application of SMD Capacitors (Continuation)

Solder Paste

To achieve reliable soldering results one of the following solder alloys have from case to case proven being workable:

Lead free solder paste

Sn - Bi Sn - Zn (Bi) Sn - Ag - Cu (suitable for SMD-PET 5040/ 6054 and SMD-PPS)

Solder paste with lead

Sn - Pb - Ag (Sn60-Pb40-A, Sn63-Pb37-A)

Washing

WIMA SMD components with plastic encapsulation - like all other components of similar construction irrespective of the make - cannot be regarded as hermetically sealed. Due to today's common washing substances, e.g. on aqueous basis instead of the formerly used halogenated hydrocarbons, with enhanced washing efficiency it became obvious that assembled SMD capacitors may show an impermissibly high deviation of the electrical parameters after a corresponding washing process. Hence it is recommended to refrain from applying industrial washing processes for WIMA SMD capacitors in order to avoid possible damages.

Initial Operation/Calibration

Due to the stress which the components are subjected to during processing, reversible parameter changes occur in almost all electronic components. The capacitance recovery accuracy to be expected with careful processing is within a scope of

|ΔC/C**|**≤ 5 %.

For the initial operation of the device a minimum storage time of

 $t \ge 24$ hours

is to be taken into account. With calibrated devices or when the application is largely dependent on capacitance it is advisable to prolong the storage time to

t ≥ 10 days

In this way ageing effects of the capacitor structure can be anticipated. Parameter changes due to processing are not to be expected after this period of time

Humidity Protection Bags

Taped WIMA SMD capacitors are shipped in humidity protection bags according to JEDEC standard (ESD/EMI-shield/watervapour proof).

Under controlled conditions the components can be stored two years and more in the originally sealed bag. Opened packing units should immediately be used up for processing. If storage is necessary the opened packing units should be stored air-tight in the original plastic bag.

Reliability

Taking account of the manufacturer's guidelines and compatible processing, the WIMA SMD stand out for the same high quality and reliability as the analogous through-hole WIMA series. The technology of metallized film capacitors used e.g. in WIMA SMD-PET achieves the best values for all fields of application. The expected value is about:

$\lambda_0 \leqslant 2$ fit

Furthermore the production of all WIMA components is subject to the regulations laid down by ISO 9001:2008 as well as the guidelines for component specifications set out by IEC quality assessment system (IECQ) for electronic components.

Electrical Characteristics and Fields of Application

Basically the WIMA SMD series have the same electrical characteristics as the analogous through-hole WIMA capacitors. Compared to ceramic or tantalum dielectrics WIMA SMD capacitors have a number of other outstanding qualities:

- favourable pulse rise time
- Iow ESR
- Iow dielectric absorption
- available in high voltage series
- large capacitance spectrum
 stand up to high mechanical
- stress
- good long-term stability

As regards technical performance as well as quality and reliability, the WIMA SMD series offer the possibility to cover nearly all applications of conventionally through-hole film capacitors with SMD components. Furthermore, the WIMA SMD series can now be used for all the demanding

capacitor applications for which, in the past, the use of through-hole components was mandatory:

- measuring techniques
- oscillator circuits
- differentiating and integrating circuits
- A/D or D/A transformers
- sample and hold circuits
- automotive electronics

With the WIMA SMD programme available today, the major part of all plastic film capacitors can be replaced by WIMA SMD components. The field of application ranges from standard coupling capacitors to use in switch-mode power supplies as filter or charging capacitors with high voltage and capacitance values, as well as in telecommunications e.g. the well-known telephone capacitor 1μ F/250VDC.

Blister Tape Packaging and Packing Units of the WIMA SMD Capacitors

Tape advance and return:

30.4

30.4

Size Code	1812	A0	A۱	Bo ±0.1	Bı	Do +0,1	D1 +0.1	P ±0.1	Po* ±0.1	P2 ±0.05	E ±0.1	F ±0.05	G	W ±0,3	W0 ±0,2	K ±0,1	T ±0,1
Box size	Code	±0.1		10.1		-0	-0	10.1	10.1	10.00	±0.1	10.00		10.0	± 0.2	±0.1	10.1
4.8×3.3×3	KA	3.55	3.3	5.1	4.8	Ø1.5	Ø1.5	8	4	2	1.75	5.5	2.2	12	9.5	3.4	0.3
4.8×3.3×4	KB	3.55	3.3	5.1	4.8	Ø1.5	Ø1.5	8	4	2	1.75	5.5	2.2	12	9.5	4.4	0.3
					-	-	_						-				
Size Code	2220	A0 +0.1	Aı	Bo ±0.1	Bı	D0 + 0.1	D1 +0.1	P ±0.1	Po*	P2 ±0.05	E ±0.1	F ±0.05	G	W ±0.3	W0 ±0,2	K ±0.1	T ±0.1
Box size	Code	±0.1		±0.1		-0	-0	10.1	10.1	10.00	±0.1	10.00		10.0	± 0.2	±0.1	20.1
5.7x5.1x3.5	QA	6.3	5.7	5.6	5.1	Ø1.5	Ø1.5	8	4	2	1.75	5.5	1.95	12	9.5	3.7	0.3
5.7x5.1x4.5	QB	6.3	5.7	5.6	5.1	Ø1.5	Ø1.5	8	4	2	1.75	5.5	1.95	12	9.5	4.7	0.3
Size Code	2824	Ao	Aı	Bo	Bı	Do	Dı	P	Po*	P ₂	E	F	G	W	Wo	K	T

0120 0000		±0.1		±0.1		+0.1	+01	±0.1	+0.1	±0.05	+0.1	+0.05		+03	±0.2	+0.1	±0.1
Box size	Code	10.1		10.1		-0	-0	10.1	10.1	10.00	10.1	10.00		10.0	10.2	10.1	10.1
7.2×6.1×3	TA	6.6	6.1	7.7	7.2	Ø1.5	Ø1.5	12	4	2	1.75	5.5	0.9	12	9.5	3.4	0.3
7.2×6.1×5	TB	6.6	6.1	7.7	7.2	Ø1.5	Ø1.5	12	4	2	1.75	5.5	0.9	12	9.5	5.4	0.4
		-															

	Code			Bo ±0.1			D1 +0.1 -0								W0 ±0.2		
Size Code 4030	VA	10.7	10.2	8.1	9.1	Ø1.5	Ø1.5	16	4	2	1.75	7.5	1.9	16	13.3	5.5	0.3
Size Code 5040	XA	13.5	12.7	11	11.5	Ø1.5	Ø1.5	16	4	2	1.75	11.5	4.7	24	21.3	6.5	0.3
Size Code 6054	YA	17.0	16.5	15.6	15.0	Ø1.5	Ø1.5	20	4	2	1.75	11.5	2.95	24	21.3	7.5	0.3

* cumulative after 10 steps \pm 0.2 mm max.

Samples and pre-production needs on request or 1 Reel minimum.

Packing units

5040

6054

taped Reel 180 mm Ø	taped Reel 330 mm Ø	bulk Standard
700	2500	3000
500	2000	3000

24.4

24.4

90

90

taped Reel 180 mm Ø	taped Reel 330 mm Ø	bulk Standard					
500	1800	3000					
400	1500	3000					

taped Reel	bulk
330 mm Ø	Standard
1500	2000
750	2000

taped Reel	bulk
330 mm Ø	Standard
775	2000
600	1000
450	500

Part number codes for SMD packing

W (Blister)	Ø in mm	Code
12	180	Р
12	330	Q
16	330	R
24	330	T
Bulk Stanc	lard	S

WIMA Part Number System

- Field 1 4: Type description
- Field 5 6: Rated voltage
- Field 7 10: Capacitance
- Field 11 12: Size and PCM
- Field 13 14: Version code (e.g. Snubber versions)
- Field 15: Capacitance tolerance
- Field 16: Packing
- Field 17 18: Pin length (untaped)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
м	К	S	2	с	0	2	1	0	0	1	A	0	0	м	S	S	D
	MKS	52		63 \	/DC		0.0	μF		2.5×6	.5x7.2		-	20%	bulk	6	-2
SMD-P SMD-P FKP 02 MKS 0 FKP 2 MKS 2 FKP 2 MKP 2 FKS 3 FKP 3 MKP 4 MKP 4 FKP 1 MKP 4 FKP 1 MKP-X MKP-X MKP-X MKP-X MP 3-Y MP 3-Y	PS 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	= SA $= SA$ $= FK$	\DI \DI \DI \DI \DI \DI \DI \DI \DI \DI	Rated v 50 VDC 63 VDC 250 VDC 400 VDC 450 VDC 600 VDC 630 VDC 850 VDC 850 VDC 850 VDC 1000 VD 1200 VD 1200 VD 1250 VD 1250 VD 1250 VD 1250 VD 1250 VD 2500 VD 2500 VD 2500 VD 2500 VD 2500 VC 3000 VD 2500 VC 250 VAC 775 VAC 300 VAC	= BC = CC = CC = DC = FC = G = G = FC = G = FC = FC = FC =	220 47 0 47 0 10 1 15 0 220 33 47 68 10 0 22 0 33 1 47 0 33 1 47 0 68 0 0.0 0 0.0 0 0.0 0 0.0 0 0.1 0 0.2 0 0.2 0 0.2 0 0.4 0 0.2 0 0.2 0 0.2 0 0.2 0 2.4 0 47 0 22 0 47 0 2.2 0 2.2 0 2.2 0 2.2 0 2.2 0 2.2 0 2.2	γ pF 0 pF 00 pF 047 µF µF µF µF µF µF µF µF µF 0 µF 0 µF 0 µF	Ince: = 0022 = 0047 = 0100 = 0150 = 0220 = 0330 = 0470 = 100 = 1150 = 1220 = 1330 = 1470 = 1680 = 2100 = 2220 = 2470 = 3100 = 3220 = 3470 = 4470 = 5100 = 5220 = 5470 = 6100 = 6220 = 7100	4.8x 5.7x 5.7x 7.2x 7.2x 10.2 12.75 15.35 2.5x 3x7. 2.5x 3x7. 2.5x 3x8. 3x9 4x9 5x11 6x12 5x14 6x12 5x14 6x12 9x19 11x2 9x19 11x2 94x7 	3.3x 3 9 3.3x 4 9 5.1x 3.4 5.1x 4.5 5.1x 4.5 6.1x 5 9 6.1x 5 9 7.6x 5 7.7.4.6 1 5.x 4.6 1 6.5x 7.2 5x 7.2 1 7x 10 P 5x 10 P 5x 10 P x 13 PC 2.5x 18 4x 26.5 5x 26.5 9x 31.5 1x 31.5 9x 41.5 22x	CM7.5 CM7.5 M 10 M 10 CM 15 PCM 15 PCM 22 PCM 22 PCM 27 PCM 27 PCM 37 5 PCM 37 5 PCM 37 5 PCM 37 5 PCM 37	2 = K 20 = G 20 = G 20 = G 4 = T/4 = T/4 30 = W 40 = X 54 = Y/4 = 0 = 0, = 0, = 0, = 0, = 0, = 0, = 0, = 0,	A B A B A B A A A B C A B A B A C B C A B A B	Toleran ±20% ±10% ±2.5% ±1% Packing AMMO A	= M = K = J = H = E H16.5 3 H16.5 4 H18.5 3 H18.5 4 6.5 360 6.5 360 8.5 500 6.5 8.5 W12 18 W12 33 W16 33 W16 33 W16 33 Standa	490 x 37(340 x 34(490 x 37(30 30 30 30 30 30 30 30 30	B = B C = C

The data on this page is not complete and serves only to explain the part number system. Part number information is listed on the pages of the respective WIMA range.