

Features

- RoHS lead-free-solder and lead-solder-exempted products are available
- Input voltage up to 144 VDC
- Single output of 5.1 to 48 VDC
- · No input-to-output isolation
- · High efficiency up to 96%
- · Extremely wide input voltage range
- · Low input-to-output differential voltage
- · Very good dynamic properties
- · Input undervoltage lockout
- · Output voltage adjustment and inhibit function
- · Continuously no-load and short-circuit proof
- · All boards are coated with a protective lacquer

Safety-compliant to IEC/EN 60950-1 and UL/CSA 60950-1 2^{nd} Ed.

Description

The PSB Series of positive switching regulators are designed as power supplies for electronic systems, where no input-tooutput isolation is required. Their major advantages include a high level of efficiency, high reliability, low output ripple, and excellent dynamic response. Models with input voltages up to 144 V are specially designed for secondary switched and battery-driven mobile applications. The converters are suitable for railway applications according to EN 50155 and EN 50121.

The case design allows for operation up to 71 $^\circ\text{C}.$ The PSB Series is designed for wall or chassis mounting with faston connections.

Various options are available to adapt the converters to different applications.

Table of Contents

Description1Model Selection2Functional Description3Electrical Input Data4Electrical Output Data6Auxiliary Functions10

Electromagnetic Compatibility (EMC)	11
Immunity to Environmental Conditions	12
Mechanical Data	13
Safety and Installation Instructions	13
Description of Options	14
Accessories	15

Page

Page

Model Selection

Table 1: PSB Series

Output voltage	Output current	Operating input voltage range	Nom. input voltage	Effici	ency ²	Type designation	Options
V _{o nom} [V]	I _{o nom} [A]	<i>V</i> _i [V]	V _{i nom} [V]	η _{min} [%]	η _{typ} [%]		
5.1	4 ³	15 – 144 ¹	60	76	80	PSB5A4-9iR	-7, L, P, C, G
5.1	6	8 – 80	40	79	82.5	PSB5A6-9iR	-7, L, P, C, G
5.1	7	7 – 40	20	83	84.5	PSB5A7-9iR	-7, L, P, C, G
5.1	8	7 – 40	20	82.5	84	PSB5A8-2	iR ⁵
12	34	18 – 144 ¹	60	87	88.5	PSB123-9iR	-7, L, P, C, G
12	5	15 – 80	40	89	90.5	PSB125-9iR	-7, L, P, C, G
12	6	15 – 40	20	89.5	91	PSB126-2	iR ⁵
15	34	22 – 144 ¹	60	89	90	PSB153-9iR	-7, L, P, C, G
15	5	19 – 80	40	90.5	92.5	PSB155-9iR	-7, L, P, C, G
15	6	19 – 40	30	91	92.5	PSB156-2	iR ⁵
24	34	31 – 144 ¹	60	92.5	94	PSB243-9iR	-7, L, P, C, G
24	5	29 – 80	50	93.5	95	PSB245-9iR	-7, L, P, C, G
24	6	29 - 60	40	94	96	PSB246-2	iR ⁵
36	34	44 – 144 ¹	80	94	95	PSB363-9iR	-7, L, P, C, G
36	5	42 - 80	60	95.5	96.5	PSB365-9iR	-7, L, P, C, G
48	34	58 –144 ¹	80	95.5	96.5	PSB483-9iR	-7, L, P, C, G

¹ Surges up to 156 V for 2 s; see *Electrical Input Data*

² Efficiency at $V_{i \text{ nom}}$ and $I_{o \text{ nom}}$ ³ $I_{o \text{ max}} = 5 \text{ A at } V_i \le 80 \text{ V}$; for $V_i > 80 \text{ V}$, see fig. 4.

⁴ $I_{o max}$ = 4 A at $V_i \le 80$ V; for $V_i > 80$ V, see fig. 4.

⁵ Options iR in a package

NFND: Not for new designs.

Preferred for new designs

Note: The sequence of options must follow the order above.

Part Number Description

Positive switching regulator in case B02PSB
Nominal output voltage in volt 5.1 to 48
Nominal output current in Ampère 3 to 8
Operational ambient temperature range T_A -10 to 50 °C2
−25 to 50 °C5
–25 to 71 °C (option)7
–40 to 71 °C9
other (customer-specific models)0
Input filter (option)L
Inhibit input i
Control input for output voltage adjustment ¹ R
Potentiometer ¹ (option) P
Thyristor crowbar (option) C
RoHS-compliant for all 6 substances G
¹ Feature R excludes option P and vice versa.

Example: PSB123-9LiPCG designates a positive switching regulator with output 12 V, 3 A, ambient temperature range of -40 to 71 °C, input filter, inhibit input, output adjust potentiometer, thyristor crowbar, and RoHS-compliant.

Customer-specific Models

Positive switching regulator in case B01 PSB
Nominal output voltage in Volt (without decimals) 12
Decimal places:
0.0 VZ
0.1 V A
0.15 VB
0.2 V C
0.25 V D
0.3 V E
0.4 VF
0.5 V G
0.6 V H
0.7 VJ
0.8 VK
0.9 V L
otherY
Output current in Ampère 3
Identification character A, B,
Temperature range and options9iRG

Produkt Marking

Type designation, applicable safety approval marks, warnings, pin allocation, patent nos., and company logo.

Input voltage range, nominal output voltage and current, pin allocation of auxiliary functions and options, and protection

degree. Identification of LED and the optional potentiometer.

Label with input voltage range, nominal output voltage and current, protection degree, batch no., serial no., and data code including production site, version (modification status), date of production.

Functional Description

This switching regulator uses the buck converter topology. The input is not electrically isolated from the output. During the on period of the switching transistor, current is transferred to the output, and energy is stored in the output choke. During the off period, this energy forces the current to keep flowing through the output, to the load, and back through the freewheeling diode. Regulation is accomplished by varying the duty cycle (on/ratio) of the power switch. The regulator is equipped with a undervoltage lockout, but no overvoltage shutdown.

These regulators are ideal for a wide range of applications, where input to output isolation is not necessary, or where already provided by an external front end (e.g., a transformer with rectifier). To optimize customer's needs, additional options and accessories are available.

Electrical Input Data

General Conditions: T_A = 25°C, unless T_C is specified

Table 2a: Input data

Model	odel			PSB5A8			PSB126			PSB156			PSB246		
Charac	teristics	Conditions	min	typ	max	min	nin typ max		min typ max		max	min	typ	max	
Vi	Operating input voltage	$I_{\rm o} = 0 - I_{\rm o nom}$	7		40	15		40	19		40	29		60	V
$\Delta V_{\rm iomin}$	Min. diff. voltage V _i – V _o	$T_{\rm C min} - T_{\rm C max}$			1.9			3			4			5	
V _{i UVL}	Undervoltage lockout			7.3			7.3			7.3			12		
/ _{i0}	No load input current	$I_{\rm o}$ = 0, $V_{\rm i min} - V_{\rm i max}$			50			50			50			50	mA
I _{inr p}	Peak value of inrush current	V _{i nom}		75			75			150			150		Α
t _{inr r}	Rise time of inrush current			5			5			5			5		μs
t _{inr h}	Time to half-value			40			40			40			40		
ViRFI	EN 55011, 0.15 – 30 MHz	V _{i nom} , I _{o nom}		А			А			А			А		Class

Tab. 2b: Input data

Model			I	PSB5A7	7		PSB5A	6	F	Unit		
Chara	cteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	
Vi	Operating input voltage	$I_{\rm o} = 0 - I_{\rm o nom}$	7		40	8		80	15		80	V
$\Delta V_{\rm iomin}$	Min. diff. voltage ($V_i - V_o$)	$T_{\rm C min} - T_{\rm C max}$			1.9			2.9			3	
$V_{\rm iUVL}$	Undervoltage lockout			6.3			7.3			7.3		
/ _{i0}	No load input current	$I_{\rm o}$ = 0, $V_{\rm i min} - V_{\rm i max}$			45			40			35	mA
I _{inr p}	Peak value of inrush current	Vinom		75			150			150		А
t _{inr r}	Rise time of inrush current	without option L		5			5			5		μs
t _{inr h}	Time to half-value			40			40			40		
l _{inr p}	Peak value of inrush current	Vinom		100			180			180		А
t _{inr r}	Rise time	with option L		15			15			15		μs
t _{inr h}	Time to half-value			100			100			100		
V _{i RFI}	EN 55011 0.15 – 30 MHz	V _{i nom} , I _{o nom} with option L		В			В			В		Class

Tab. 2c: Input data

Model				PSB155	;		PSB24	5	F	Unit		
Chara	cteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	
Vi	Operating input voltage	$I_{\rm o} = 0 - I_{\rm o nom}$	19		80	29		80	42		80	V
$\Delta V_{\rm iomin}$	Min. diff. voltage (V _i – V _o)	$T_{\rm C min} - T_{\rm C max}$			4			5			6	
$V_{\rm iUVL}$	Undervoltage lockout			7.3			12			19		
I _{i0}	No load input current	$I_{\rm o}$ = 0, $V_{\rm i min} - V_{\rm i max}$			35			35			40	mA
l _{inr p}	Peak value of inrush current	V _{i nom}		150			150			150		А
t _{inr r}	Rise time of inrush current	without option L		5			5			5		μs
t _{inr h}	Time to half-value			40			40			40		
l _{inr p}	Peak value of inrush current	Vinom		180			180			180		А
t _{inr r}	Rise time	with option L		15			15			15		μs
t _{inr h}	Time to half-value			100			100			100		
V i RFI	EN 55011 0.15 – 30 MHz	V _{i nom} , I _{o nom} with option L		В			В			В		Class

T 1	0.1	1	1.1.	•	0			
Tab.	2a:	Input	data.	General	Conditions	as	per table 2 a	

Model			I	PSB5A4	ļ.		PSB12	23	F	Unit		
Charao	cteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	1
Vi	Operating input voltage	$I_{\rm o} = 0 - I_{\rm o nom}$	15		144 ¹	18		144 ¹	22		144 ¹	V
$\Delta V_{\rm iomin}$	Min. diff. voltage $(V_i - V_o)$	$T_{\rm C min} - T_{\rm C max}$			9.9			6			7	1
V _{i UVL}	Undervoltage lockout			10			12			15		1
I _{i0}	No load input current	$I_{\rm o}$ = 0, $V_{\rm i min} - V_{\rm i max}$			40			35			35	mA
I _{inr p}	Peak value of inrush current	V _{i nom}		150			150			150		А
t _{inr r}	Rise time	without option L		5			5			5		μs
t _{inr h}	Time to half-value			40			40			40		1
I _{inr p}	Peak value of inrush current	Vinom		180			180			180		Α
t _{inr r}	Rise time of inrush current	with option L		15			15			15		μs
t _{inr h}	Time to half-value	-		100			100			100		1
ViRFI	EN 55011 0.15 – 30 MHz	V _{i nom} , I _{o nom} with option L		A B²			А В ²			A B²		Class

Tab. 2e: Input data

Model				PSB243	3		PSB36	63	F	Unit		
Charao	cteristics	Conditions	min	typ	max	min	typ	max	min	typ	max	
Vi	Operating input voltage	$I_{\rm o} = 0 - I_{\rm o nom}$	31		144 ¹	44		144 ¹	58		144 ¹	V
$\Delta V_{\rm iomin}$	Min. diff. voltage (V _i – V _o)	$T_{\rm C min} - T_{\rm C max}$			7			8			10	1
ViUVL	Undervoltage lockout			19			29			40		-
I _{i0}	No load input current	$I_{\rm o}$ = 0, $V_{\rm i min} - V_{\rm i max}$			35			40			45	mA
l _{inr p}	Peak value of inrush current	Vinom		150			150			150		А
t _{inr r}	Rise time of inrush current	without option L		5			5			5		μs
t _{inr h}	Time to half-value			40			40			40		
l _{inr p}	Peak value of inrush current	Vinom		180			180			180		Α
t _{inr r}	Rise time	with option L		15			15			15		μs
t _{inr h}	Time to half-value			100			100			100		
ViRFI	EN 55011 0.15 – 30 MHz	V _{i nom} , I _{o nom} with option L		A B ²			А В ²			A B²		Class

¹ Surges up to 156 V for 2 s

² With external input capacitor $C_i = 470 \ \mu\text{F}/200 \ \text{V}$ and option L

External Input Circuitry and Fuse

The sum of the lengths of the supply lines to the source or to the nearest capacitor $\ge 100 \ \mu F$ (a + b) should not exceed 5 m,

Fig. 2 Switching regulator with long supply lines.

interference voltages.

unless option L is fitted. This option is recommended in order to prevent power line oscillations and reduce superimposed

Regulators with option C are fitted with an input fuse.

Electrical Outptu Data

General conditions:

- $T_A = 25$ °C, unless T_C is specified
- R-input open (or V_0 set to $V_{0 nom}$ with option P)

Table 3a: Output data

Model				Р	SB5A8	P	SB12	6	Р	SB1	56	Р	Unit		
Chara	cteristics		Conditions	min	typ max	min	typ	max	min	typ	max	min	typ	max	
Vo	Output volta	age	V _{i nom} , I _{o nom}	5.05	5.15	11.6		12.4	14.5		15.5	23.3		24.7	V
I _{o nom}	Output curr	ent	V _{i min} – V _{i max}	0	8.0	0		6.0	0		6.0	0		6.0	А
I _{oL}	Output curre	ent limitation	$T_{\rm Cmin} - T_{\rm Cmax}$	8.0	10.4	6.0		7.8	6-0		7.8	6.0		7.8	
Vo	Output	Switching frequ.	V _{i nom} , I _{o nom}		40			150			200			300	mV _{pp}
	voltage noise	Total	IEC/EN 61204 BW = 20 MHz		45			160			210			310	
ΔV _{oV}	Static line re	egulation	V _{i min} – V _{i max} , I _{o nom}		100			240			300			480	mV
ΔV _{ol}	Static load I	regulation	$V_{\rm i nom}$, $I_{\rm o} = 0 - I_{\rm o nom}$		100			180			200			300	
V _{od}	Dynamic	Voltage deviation	V _{i nom}		150		360			450			700		
t _d	voltage regulation	Recovery time	$I_{o nom} \leftrightarrow {}^{1/_{3}} I_{o nom}$ IEC/EN 61204		100		120			120			160		μs
ανο	Temperature coefficient $\Delta V_0 / \Delta T_C$ ($T_C \min - T_C \max$)		$V_{i \min} - V_{i \max}$ $I_0 = 0 - I_{0 \min}$		±0.02	2		±0.02			±0.02			±0.02	%/K

Table 3b: Output data

Model				F	PSB5A7		F	SB5A	6	F	SB12	5	Unit
Charao	cteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
Vo	Output volta	age	V _{i nom} , I _{o nom}	5.07		5.13	5.07		5.13	11.93		12.07	V
I _{o nom} 0	Output curr	ent	$V_{\rm imin} - V_{\rm imax}$	0		7.0	0		6.0	0		5.0	А
I _{oL}	Output curre	ent limitation	$T_{\rm Cmin} - T_{\rm Cmax}$	7.0		9.1	6.0		7.8	5.0		6.5	
Vo	Output	Switching frequ.			15	25		15	35		25	45	mV _{pp}
	voltage noise	Total	IEC/EN 61204 BW = 20 MHz		19	29		19	39		29	49	
ΔV _{oV}	Static line re	egulation	V _{i min} – V _{i max} , I _{o nom}			100			100			240	mV
ΔVol	Static load r	regulation	$V_{\rm i nom}, I_{\rm o} = 0 - I_{\rm o nom}$			100			100			120	
V _{od}	Dynamic	Voltage deviat.	V _{i nom}		150			130			360		
t _d	load regulation	Recovery time	$I_{o nom} \leftrightarrow {}^{1/_{3}}I_{o nom}$ IEC/EN 61204		50			50			60		μs
ανο	Temperature coefficient $\Delta V_{\rm O}/\Delta T_{\rm C} (T_{\rm C min} - T_{\rm C max})$		$V_{i \min} - V_{i \max}$ $I_0 = 0 - I_{0 \min}$			±0.02			±0.02			±0.02	%/K

Model					PSB155	5		PSB24	5	F	PSB365	5	Unit
Chara	cteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
Vo	Output volta	age	V _{i nom} , I _{o nom}	14.91		15.09	23.68		24.14	35.78		36.22	V
I _{o nom}	Output curr	ent	V _{i min} – V _{i max}	0		5.0	0		5.0	0		5.0	А
I _{oL}	Output curre	ent limitation	$T_{\rm Cmin} - T_{\rm Cmax}$	5.0		6.5	5.0		6.5	5.0		6.5	
Vo	Output	Switching freq.	V _{i nom} , I _{o nom}		40	70		45	120		70	180	${\sf mV}_{\sf pp}$
	voltage noise	Total	IEC/EN 61204 BW = 20 MHz		44	74		50	125		75	185	-
ΔV _{oV}	Static line re	gulation	V _{i min} – V _{i max} , I _{o nom}		40	75		70	150		100	200	mV
ΔV _{ol}	Static load r	regulation	$V_{\rm i nom}, I_{\rm o} = 0 - I_{\rm o nom}$		30	65		70	120		120	160	
Vod	Dynamic	Voltage deviat.	V _{inom}		100			120			180		
t _d	load regulation	Recovery time	$I_{o nom} \leftrightarrow {}^{1/_3} I_{o nom}$ IEC/EN 61204		60			80			100		μs
ανο	•	e coefficient _{C min} – T _{C max})	$V_{i \min} - V_{i \max}$ $I_0 = 0 - I_{0 \min}$			±0.02			±0.02			±0.02	%/K

Table 3c: Output data. General conditions as per table 3a

Table 3d: Output data

Model					PSB5A	.4		PSB12	3	F	SB15	3	Unit
Chara	cteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
Vo	Output volta	ige	V _{i nom} , I _{o nom}	5.07		5.13	5.07		5.13	11.93		12.07	V
I _{o nom}	Output current nominal V _{i min} – V _{i max}			4.0			4.0			4.0		А	
I _{o max}	hax Output current max $V_{i \min} - 8$		V _{i min} – 80 V		5.0			5.0			5.0		А
I _{oL}	Output curre	ent limitation	$T_{\rm Cmin} - T_{\rm Cmax}$		5.0		6.5	4.0		5.2	4.0		5.2
Vo	Output	Switching frequ.	V _{i nom} , I _{o nom}		15	35		25	45		40	70	mV _{pp}
	voltage noise	Total	IEC/EN 61204 BW = 20 MHz		19	39		29	49		44	74	
ΔV _{oV}	Static line re	gulation	V _{i min} – V _{i max} , I _{o nom}		20	45		30	55		50	75	mV
$\Delta V_{\rm ol}$	Static load r	egulation	$V_{\rm i nom}$, $I_{\rm o} = 0 - I_{\rm o nom}$		20	35		25	40		30	65	-
V _{od}	Dynamic	Voltage deviat.	V _{i nom}		100			100			100		-
t _d	load regulation	Recovery time	$I_{o nom} \leftrightarrow \frac{1}{3} I_{o nom}$ IEC/EN 61204		50			50			60		μs
α_{Vo}		e coefficient _{e min} – T _{C max})	$V_{i \min} - V_{i \max}$ $I_0 = 0 - I_{0 \min}$			±0.02			±0.02			±0.02	%/K

Model					PSB24	3	F	PSB36	3	F	SB48	3	Unit
Chara	cteristics		Conditions	min	typ	max	min	typ	max	min	typ	max	
Vo	Output volta	age	V _{i nom} , I _{o nom}	23.86		24.14	35.78		36.22	47.71		48.29	V
I _{o nom}	Output curr	ent nominal	nominal V _{i min} – V _{i max}		4.0			4.0			4.0		A
I _{o max}	Output curr	ent	V _{i min} – 80 V		4.0			4.0			4.0		A
I _{oL}	Output curre	ent limitation	$T_{\rm Cmin} - T_{\rm Cmax}$	4.0		5.2	4.0		5.2	5.0		5.2	
Vo	Output	Switching freq.	V _{i nom} , I _{o nom}		45	120		70	180		90	190	mV _{pp}
	voltage noise	Total	IEC/EN 61204 BW = 20 MHz		50	125		75	185		95	195	
ΔV _{oV}	Static line re	egulation	V _{i min} – V _{i max} , I _{o nom}		70	150		100	200		150	300	mV
$\Delta V_{ m ol}$	Static load r	regulation	$V_{\rm i nom}, I_{\rm o} = 0 - I_{\rm o nom}$		70	120		120	160		150	250	
Vod	Dynamic	Voltage deviat.	V _{i nom}		120			140			150		
t _d	load regulation	Recovery time	$I_{o nom} \leftrightarrow \frac{1}{3} I_{o nom}$ IEC/EN 61204		80			100			100		μs
α_{Vo}	· ·	e coefficient _{C min} – T _{C max})	$V_{i \min} - V_{i \max}$ $I_0 = 0 - I_{0 \min}$			±0.02			±0.02			±0.02	%/K

Switching regulator with long supply lines.

Thermal Considerations

When a switching regulator is located in free, quasi-stationary air (convection cooling) at a temperature T_A = 71 °C and is operated at $I_{o nom}$, the case temperature T_C will be about 95 °C

Output current versus temperature (models -7 or -9 and with $V_{i\,max} \leq$ 80 V)

after the warm-up phase, measured at the measuring point of case temperature T_C ; see *Mechanical Data*.

Under practical operating conditions, T_A may exceed 71 °C, provided that additional measures (heat sink, fan, etc.) are taken to ensure that the case temperature T_C does not exceed $T_{C max}$.

The regulators with $V_{i max} = 144$ V withstand 156 V for 2 s in order to comply with railway standards. However, $I_{o max}$ is only continuously available for $V_i \le 80$ V or for reduced T_A and T_C ; see fig. 4c.

For operation of regulators with $V_{i max} = 144$ V at $T_A \ge 46$ °C, an internal PTC (thermistor) starts reducing $I_{o L}$, if V_i is greater than 80 V. At most unfavorable conditions, $I_{o L}$ is reduced by 1 A; see fig. 5.

Fig. 5 Typ. dependance of $I_{o L}$ of temperature

Output Protection and Short Circuit Behaviour

A voltage suppressor diode, which in worst case conditions fails into a short circuit (or a thyristor crowbar, option C), protects the output against an internally generated overvoltage. Such an overvoltage could occur due to a failure of either the control circuit or the switching transistor. The output protection is not designed to withstand externally applied overvoltages.

A constant current limitation circuit holds the output current almost constant, when an overload or a short circuit is applied to the output. It acts self-protecting and recovers automatically after removal of the overload or short circuit condition.

Fig. 6a Short-circuit behaviour V_o vs. I_o for regulators with $V_{i\,max} \leq 80~V$

Fig. 6b Short-circuit behaviour V_o versus I_o for regulators with $V_{i max} = 144 V$.

Parallel and Series Connection

Outputs of equal nominal voltages can be parallel-connected. However, the use of a single regulator with higher output power, is always the better solution.

In parallel-connected operation, one or several outputs may operate continuously at their current limit knee-point which will cause an increase of the heat generation. Consequently, the max. ambient temperature should be reduced by 10 K.

Outputs can be series-connected with any other regulator. In series-connection the maximum output current is limited by the lowest current limitation, but electrically separated source voltages are needed for each regulator.

Auxiliary Functions

i Inhibit (Remote On/Off)

The inhibit input allows for disabling the switching regulator by a control signal. In systems with several converters, this

Fig. 7

Typical inhibit current linh versus inhibit voltage Vinh

Fig. 8 Definition of I_{inh} and V_{inh}

Fig. 9 Output response as a function of inhibit signal

Table 4: Inhibit characteristics

Cha	racteristics		Conditions	min	typ max	Unit
Vinh	Inhibit input voltage			-50	+0.8	V
		$V_{\rm o} = {\rm off}$	$T_{\rm C min} - T_{\rm C max}$	+2.4	+50	
t _r	Switch-on time		V _i = V _{i nom}		130	ms
t _f	Switch-off time		$R_{\rm L} = V_{\rm onom} / I_{\rm onom}$		25	
I _{i inh}	Input current when i	nhibited	$V_{\rm i} = V_{\rm i nom}$		25	mA

feature can be used, for example, to control the activation sequence of converters by a logic signal. An output voltage overshoot will not occur at switch on.

Note: With open i-pin, the output is enabled.

R Output Voltage Adjust

Note: With open R input, $V_{o} \approx V_{o \text{ nom}}$.

The output voltage V_o can either be adjusted with an external voltage source (V_{ext}) or with an external resistor (R_1 or R_2). The adjustment range is 0 – 108% of V_o nom. The minimum differential voltage $\Delta V_{io min}$ between input and output (see *Electrical Input Data*) should be maintained.

a)
$$V_{\rm o} = 0 - V_{\rm o max}$$
, using $V_{\rm ext}$ between pins R and G:

$$V_{\text{ext}} \approx 2.5 \text{ V} \cdot \frac{V_{\text{o}}}{V_{\text{o nom}}}$$
 $V_{\text{o}} \approx V_{\text{o nom}} \cdot \frac{V_{\text{ext}}}{2.5 \text{ V}}$

Caution: To prevent damage, V_{ext} should not exceed 20 V, nor be negative.

b) $V_{o} = 0$ to $V_{o nom}$, using R_{ext1} between pins R and G:

$$R_{\text{ext1}} \approx \frac{4000 \ \Omega \cdot V_{\text{o}}}{V_{\text{o nom}} - V_{\text{o}}} \qquad V_{\text{o}} \approx \frac{V_{\text{o nom}} \cdot R_{\text{ext1}}}{R_{\text{ext1}} + 4000 \ \Omega}$$

c) $V_{o} = V_{o nom}$ to $V_{o max}$, using R_{ext2} between pins R and G:

$$R_{\text{ext2}} \approx \frac{4000 \ \Omega \cdot V_{\text{o}} \cdot (V_{\text{o nom}} - 2.5 \text{ V})}{2.5 \text{ V} \cdot (V_{\text{o}} - V_{\text{o}} \text{ nom})}$$

$$V_{\rm o} \approx \frac{V_{\rm o nom} \cdot 2.5 \, \rm V \cdot R_{ext2}}{2.5 \, \rm V \cdot (R_{ext2} + 4000 \, \Omega) - V_{\rm o nom} \cdot 4000 \, \Omega}$$

Caution: To prevent damage, \textit{R}_{ext2} should never be less than 47 k $\Omega.$

Fig. 10 Output voltage adjustment via R-input

LED Output Voltage Indicator

A yellow LED indicator is illuminated, when the output voltage is higher than approx. 3 V (not for -2 models).

Electromagnetic Compatibility (EMC)

Electromagnetic Immunity

General condition: Case not earthed.

Table 5: Immunity type tests

Phenomenon	Standard	Class Level	Coupling mode ¹	Value applied	Waveform	Source Imped.	Test procedure	In oper.	Perf. crit. ²
Voltage surge ³	IEC 60571-1	3	i/c, +i/–i	800 V _p	100 µs	100 Ω	1 pos. and 1 neg.	yes	В
				1500 V _p	50 µs		surge per coupling mode		
				3000 V _p	5 µs		couping mode		
				4000 V _p	1 µs				
				7000 V _p	100 ns				
Electrostatic discharge	IEC/EN 61000-4-2	3 ³ 2 ⁴	contact discharge to case	6000 V _p ³ 4000 V _p ⁴	1/50 ns	330 Ω	10 positive and 10 negative discharges	yes	B ^{4 5}
Electromagnetic field	IEC/EN 61000-4-3	3 ³ 2 ⁴	antenna	10 V/m ³ 3 V/m ⁴	AM 80% 1 kHz		80 – 1000 MHz	yes	A
Electrical fast transients/burst	IEC/EN 61000-4-4	3	i/c, +i/_i	2000 V _p	bursts of 5/50 ns 5 kHz rep. rate transients with 15 ms burst duration and a 300 ms period	50 Ω	60 s positive 60 s negative transients per coupling mode	yes	A ⁵ , B ⁴
Surges	IEC/EN	2 ³	i/c	1000 V _p	1.2/50 µs	12 Ω	5 pos. and 5 neg.	yes	A 5
	61000-4-5	2 ³	+i/—i	500 V _p]	2 Ω	surges per coupling mode		
Conducted disturbances	IEC/EN 61000-4-6	3 ³ 2 ⁴	i, o, signal wires	10 VAC ³ 3 VAC ⁴	AM 80% 1 kHz	150 Ω	0.15 – 80 MHz	yes	A

¹ i = input, o = output, c = case.

² A = Normal operation, no deviation from specifications, B = Normal operation, temporary loss of function or deviation from specs possible

³ Not applicable for -2 models

⁴ Valid for -2 models

⁵ Option L neccessary; with option C, manual reset might be necessary.

Electromagnetic Emission

For emission levels refer to *Electrical Input Data*.

Fig. 11

Typical disturbance voltage (quasi-peak) at the input according to EN 55011, measured at V_{i nom} and I_{o nom}.

Immunity to Environmental Conditions

Table 6: Mechanical and climatic stress

Test	Method	Standard	Test Conditions		Status
Cab	Damp heat steady state	IEC/EN 60068-2-78 MIL-STD-810D section 507.2	Temperature: Relative humidity: Duration:	40 ±2 °C 93 +2/-3 % 56 days	Regulator not operating
Ea	Shock (half-sinusoidal)	IEC/EN 60068-2-27 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	50 g _n = 490 m/s ² 11 ms 18 (3 each direction)	Regulator operating
Eb	Bump (half-sinusoidal)	IEC/EN 60068-2-29 MIL-STD-810D section 516.3	Acceleration amplitude: Bump duration: Number of bumps:	25 g _n = 245 m/s ² 11 ms 6000 (1000 each direction)	Regulator operating
Fc	Vibration (sinusoidal)	IEC/EN 60068-2-6 MIL-STD-810D section 514.3	Acceleration amplitude: Frequency (1 Oct/min): Test duration:	0.35 mm (10 – 60 Hz) 5 g _n = 49 m/s ² (60 – 2000 Hz) 10 – 2000 Hz 7.5 h (2.5 h each axis)	Regulator operating
Fda	Random vibration wide band Reproducibility high	IEC/EN 60068-2-35 DIN 40046 part 23	Acceleration spectral density Frequency band: Acceleration magnitude: Test duration:	: 0.05 g ² /Hz 20 – 500 Hz 4.9 g _{n rms} 3 h (1 h each axis)	Regulator operating
Kb	Salt mist, cyclic (sodium chloride NaCl solution)	IEC/EN 60068-2-52	Concentration: Duration: Storage: Storage duration: Number of cycles:	5% (30 °C) 2 h per cycle 40 °C, 93% rel. humidity 22 h per cycle 3	Regulator not operating

Temperatures

Table 7: Temperature specifications, valid for an air pressure of 800 - 1200 hPa (800 - 1200 mbar)

Temperature		-	2		-7	-9 (Oj			
Characteristics		Conditions	min	max	min	max	min	max	Unit
TA	Ambient temperature ¹	Regulator	-10	50	-25	71	-40	71	°C
T _C	Case temperature	operating	-10	80	-25	95	-40	95	1
Ts	Storage temperature ¹	Non operational	-25	100	-40	100	-55	100	1

¹ See Thermal Considerations and Overtemperature Protection.

Reliability

Table 8: Typical MTBF and device hours

MTBF	Ground Benign	Ground	l Fixed	Ground Mobile	Device Hours ¹
MTBF accord. to MIL-HDBK-217F	$T_{\rm C}$ = 40 °C	<i>T</i> _C = 40 °C	<i>T</i> _C = 70 °C	$T_{\rm C}$ = 50 °C	
	625 000 h	207 000 h	96 000 h	46 000 h	13 000 000 h

¹ Statistical values, based on an average of 4300 working hours per year and in general field use

 \odot

European Projection

Mechanical Data

Safety and Installation Instructions

Installation Instruction

Installation must strictly follow the national safety regulations in compliance with the enclosure, mounting, creepage, clearance, casualty, markings, and segregation requirements of the end-use application.

Check for hazardous voltages before connecting.

The input and the output circuit are not separated, i.e., the negative path is internally interconnected.

Do not open the regulator !

Ensure that a regulator failure (e.g., by an internal short-circuit) does not result in a hazardous condition.

Cleaning Liquids

In order to avoid possible damage, any penetration of

cleaning fluids must be prevented, since the power supplies are not hermetically sealed.

Protection Degree

Potentiometer

The protection degree is IP 30 (IP 20, if equipped with option P).

Standards and Approvals

All switching regulators have been approved according to UL 60950, CSA 60950, and IEC/EN 60950-1 2nd Ed.

The regulators have been evaluated for:

- · Building in
- The use in a pollution degree 2 environment
- · Connecting the input to a secondary circuit, which is subject to a maximum transient rating of 1500 V.

The switching regulators are subject to manufacturing surveillance in accordance with the above mentioned standards and with ISO 9001:2008.

Isolation

Electric strength test voltage between input connected with output against case: 1500 VDC, \geq 1 s (for some PSB models only with version V103 or higher).

These tests are performed in the factory as routine test in accordance with EN 50116 and IEC/EN 60950. The electric strength test should not be repeated by the customer.

Railway Application

The regulators have been developed observing the railway standards EN 50155 and EN 50121. All boards are coated with a protective lacquer.

Description of Options

-9 Extended Temperature Range

This option defines an extended temperature range as specified in table 7.

P Potentiometer

Note: Option P is not recommended, if several regulators are operated in parallel connection.

Option P excludes R function; the R-input (pin 16) should be left open-circuit. The output voltage $V_{\rm o}$ is preset to 108 % of $V_{\rm o \ nom}$ and can be adjusted in the range 90 – 108% of $V_{\rm o \ nom}$.

However, the minimum differential voltage $\Delta V_{i \text{ o min}}$ between input and output specified in *Electrical Input Data* should be observed.

L Input Filter

Option L is recommended to reduce superimposed interference voltages and to prevent oscillations, if input lines exceed the length of approx. 5 m in total. The fundamental wave (approx. 120 kHz) of the reduced interference voltage between Vi+ and Gi– has, with an input line inductance of 5 μ H, a maximum magnitude of 4 mVAC.

The input impedance of the switching regulator at 120 kHz is

about 3.5 $\Omega.$ The harmonics are small in comparison with the fundamental wave.

With option L, the maximum permissible additionally superimposed ripple v_i of the input voltage (rectifier mode) at a specified input frequency f_i has the following values:

 $v_{i \text{ max}} = 10 \text{ V}_{pp} \text{ at } 100 \text{ Hz or } \text{V}_{pp} = 1000 \text{ Hz} / f_i \times 1 \text{ V}$

C Thyristor Crowbar

Option C protects the load against power supply malfunction. It is not designed to sink external currents. A fixed-value monitoring circuit checks the output voltage V_0 . When the trigger voltage V_{0c} (see table 9) is reached, the thyristor crowbar triggers and disables the output. It can be deactivated by removal of the input voltage. In case of a defect switching transistor, the internal fuse prevents excessive current.

Type of the fuse:

- Regulators with $I_{o nom}$ = 3 A: 5 A / 250 V, slow, 5 × 20 mm
- Regulators with $I_{0 \text{ nom}} > 3 \text{ A}$: 8 A / 250 V, slow, 5 × 20 mm

Note: The crowbar can be reset by removal of the input voltage only. The inhibit signal cannot deactivate the thyristor.

G RoHS Compliance

Models with G are RoHS-compliant for all six substances.

Characteristics Conditions		<i>V</i> _o = 5.1 V		<i>V</i> _o = 12 V		<i>V</i> _o = 15 V		V _o = 24 V			<i>V</i> _o = 36 V			Unit				
			min	typ	max	min	typ	max	min	typ	max	min	typ	max	min	typ	max	
Voc	Trigger voltage		5.8		6.8	13.5		16	16.5		19	27		31	40		45	V
ts	Delay time	$V_{i \min} - V_{i \max}$ $I_0 = 0 - I_{o \min}$			1.5			1.5			1.5			1.5			1.5	μs

Table 9: Crowbar trigger levels

Accessories

A variety of electrical and mechanical accessories are available including:

- · PCB-tags and isolation pads for easy and safe PCBmounting.
- · Solder-tags for direct mounting of the regulator to a PCB board
- Ring core chockes for ripple and interference reduction.
- · Battery sensor [S-KSMH...] for using the regulator as battery charger. Different cell characteristics can be selected; see BCD20024 on our web site.

Fig. 13 Isolation pad HZZ01205-G (ISOLATIONB, B01) 0.3 mm thick

Fig. 14 Solder tag HZZ01204-G (LOETGABEL(10x)) Delivery content: 10 pieces

L = 2 m (standard length) other cable lengths on request

Fig. 15 Battery temperature sensor

For additional accessory product information, see the accessory data sheets listed with each product series at our web site.

NUCLEAR AND MEDICAL APPLICATIONS - These products are not designed or intended for use as critical components in life support systems, equipment used in hazardous environments, or nuclear control systems.

filters

TECHNICAL REVISIONS - The appearance of products, including safety agency certifications pictured on labels, may change depending on the date manufactured. Specifications are subject to change without notice.

www.belpowersolutions.com/power

