ROYALOHM

Power Metal Fixed Resistors

Performance Specification

Short Time Overload Dielectric Withstanding Voltage	±(2.0% + 0.05Ω)Max, with no evidence of mechanical damage. No evidence of flashover, mechanical damage, arcing or insulation breakdown.
Pulse Overload	\pm (5.0% + 0.05 Ω)Max, with no evidence of mechanical damage.
Terminal Strength	No evidence of mechanical damage.
Resistance to Soldering Heat	$\pm(1.0\% + 0.05\Omega)$ Max, with no evidence of mechanical damage.
Solderability	Min. 95% coverage.
Resistance to Solvent	No deterioration of protective coating and markings.
Temperature Cycling	$\pm (2.0\% + 0.05\Omega)$ Max, with no evidence of mechanical damage.
Humidity (Steady state)	$\pm (2.0\% + 0.05\Omega)$ Max, with no evidence of mechanical damage.
Load Life In Humidity	<100KΩ: ±(5.0% + 0.05Ω)Max
	≥100KΩ: ±(10.0% + 0.05Ω)Max
Load Life	<100KΩ: ±(5.0% + 0.05Ω)Max
	≥100KΩ: ±(10.0% + 0.05Ω)Max

Ordering Procedure: Ex.: PMR 1W-SSS +/-5% 100Ω, T/B-1000

Р	Μ	R	0	1	Т	J	0	1	0	1	Α	1	0
Type: PMR=	Power	Metal Feature: 0 = Stan ∢		Wattag 1T = 1 ¹ 2S = 2 3S = 3	W-SSS W-S W-S Tole G = J =	erance: = ±2% = ±5% = ±10%	 E-24 E-24 1st dig 2rd & figure 4th inn "J" ~ Ex.: 4 E-96 1st to figure the 4 of ze 	git is "0" 3^{nd} digits es of the idicates the 0.1, "K" ~ 4.7Ω , ~47 series: 3^{nd} digits es of the idigit incomposed the digit incomposed $1.33 \text{ K}\Omega$ Particle Particle P	are the si resistance in number 0.01 7J, 4.7K Ω are the si resistance licates the = 1331 acking Type = Tape/B = Tape/B	r of zeros: ~ 472 gnificant and number pe: ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel ∞ 2eel 2ee	,000 pcs. 00 pcs. ulk/Box onal Infor T-52mm, tandard lea	mation: PT-26mn ad wire for (H=38mm	Bulk/B

ROYALOHM

Power Metal Fixed Resistors

Features

- High Power, small in dimension
- Stable performance against environment conditions
- Define interruption behavior
- Application: All general purpose power application

Standard : 2% ,5% ,10% -- E - 24 series

Part No.	Style	Power Rating at 70ºC	Dimension (mm)					Max Working	Max Overload	Die l ectric Withstanding	Resistance	TCR	Std Packing
			D Max	L Max	H±3	d±0.05	PT	Voltage	Voltage	Voltage	Range	(PPM/C)	Qty
PMR011	PMR 1W -SSS	R<1Ω 0.6W			25	0.54	52	350V	400V	350V	0.56Ω~100ΚΩ	±350	5,000
		2.5 R>1Ω 1W	2.5	6.5							101KΩ~470KΩ	±400	
											471ΚΩ~1ΜΩ	±800	
PMR02S	PMR 2W-S	2W	4.0	11.0	25	0.75	52	500V	600V	350V	3.9Ω~100KΩ	±350	1,000
											101ΚΩ~680ΚΩ	±400	
PMR03S	PMR	31/1/	5.5 16.0	16.0	.0 25	0.75	64	750V	800V	350V	12Ω~100ΚΩ	±350	1,000
	3W-S		500		5.5	10.0	25	0.75	04	7500	0000	550 V	101ΚΩ~180ΚΩ

