ADV MICRO PLA/PLE/ARRAYS 28E D

- C257526 0029443 3 **RE**AMD2

PAL20R8 Family

24-pin TTL Programmable Array Logic

DISTINCTIVE CHARACTERISTICS

- As fast as 7.5 ns maximum propagation delay
- Popular 24-pin architectures: 20L8, 20R8, 20R6, 20R4
- Programmable replacement for high-speed TTL logic
- Power-up reset for initialization

GENERAL DESCRIPTION

The PAL20R8 Family (PAL20L8, PAL20R8, PAL20R6, PAL20R4) is AMD's standard 24-pin PAL device family. The devices provide user-programmable logic for replacing conventional SSI/MSI gates and flip-flops at a reduced chip count.

The family allows the systems engineer to implement the design on-chip, by opening fuse links to configure AND and OR gates within the device, according to the desired logic function. Complex interconnections between gates, which previously required time-consuming layout, are lifted from the PC board and placed on silicon, where they can be easily modified during prototyping or production.

The PAL device implements the familiar Boolean logic transfer function, the sum of products. The PAL device is a programmable AND array driving a fixed OR array. The AND array is programmed to create custom product terms, while the OR array sums selected terms at the outputs.

Easy design with PALASM[®] software

T-46-19-13

- Programmable on standard PAL[®] device programmers
- 24-pin SKINNYDIP[®] and 28-pin PLCC packages save space

In addition, the PAL device provides the following options:

- Variable input/output pin ratio
- Programmable three-state outputs
- Registers with feedback

Product terms with all connections opened assume the logical HIGH state; product terms connected to both true and complement of any single input assume the logical LOW state. Registers consist of D-type flip-flops that are loaded on the LOW-to-HIGH transition of the clock. Unused input pins should be tied to V_{CC} or GND.

The entire PAL device family is supported by the PALASM software package. The PAL family is programmed on conventional PAL device programmers with appropriate personality and socket adapter modules. See the Programmer Reference Guide for approved programmers. Once the PAL device is programmed and verified an additional connection may be opened to prevent pattern readout. This feature secures proprietary circuits.

DEVICE	DEDICATED INPUTS	OUTPUTS	PRODUCT TERMS/ OUTPUT	FEEDBACK	ENABLE
PAL20L8	14	6 comb. 2 comb.	777	1/O _	prog. prog.
PAL20R8	12	8 reg.	8	reg.	pin
PAL20R6	12	6 reg. 2 comb.	8 7	reg. I/O	pin prog.
PAL20R4	12	4 reg. 4 comb.	8 7	reg. I/O	pin prog.

PAL, PALASM, and SKINNYDIP are registered trademarks of Advanced Micro Devices. This part is covered by various U.S. and foreign patents owned by Advanced Micro Devices

T-46-19-13

PERFORMANCE OPTIONS

	(C	ommei	cial)
	35	A-2	
Speed	25	B-2	A
(t _{PD} , ns)	15		В
	10		-10
	7.5		-7
		105	210
		-	-

Power (Icc, mA)

Note:

2-108

For low power and high speed, the EE CMOS PALCE20V8 can directly replace the PAL20R8 Family.

OPERATING RANGES

Commercial	Military
-7	-12
-10	-15
B (15 ns)	B (20 ns)
B-2 (25 ns)	
A (25 ns)	A (30 ns)
A-2 (35 ns)	A-2 (50 ns)

12350-002A

12350-003A

12350-004A

T-46-19-13

CONNECTION DIAGRAMS Top View

12350-005A

Note	20L8	20R8	20R6	20R4
1	lo	CLK	CLK	CLK
2	113	ŌĔ	ŌĒ	ŌĒ
3	O1	O1	I/O1	I/O1
4	I/O ₂	O ₂	O2	I/O2
5	I/O ₃	O ₃	O3	O ₃
6	I/O₄	O4	O₄	O4
7	1/O5	O5	O5	O5
8	I/O ₆	O ₆	O ₆	O ₆
9	I/O7	O7	O7	I/O7
10	O ₈	O8	1/O ₈	I/O8

PIN DESIGNATIONS

CLK	Clock
GND	Ground
1	Input
I/O	Input/Output
NC	No Connect
0	Output
ŌĒ	Output Enable
Vcc	Supply Voltage

12350-006A

Applies to B, A, A-2 Series Only

PLCC

LCC Applies to B, A, A-2 Series Only

Note: Pin 1 is marked for orientation.

PAL20R8 Family

2-111

0257526 0029448 2 KMAMD2

ORDERING INFORMATION Commercial Products (AMD Marking Only)

T-46-19-13

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of: **a. Family Type**

- b. Number of Array Inputs
- c. Output Type
- d. Number of Outputs
- e. Speed
- f. Package Type
- g. Operating Conditions
- h. Optional Processing

Valid Combinations			
PAL20L8			
PAL20R8	-7, -10		
PAL20R6		PC, JC, DC	
PAL20R4			

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, and to check on newly released combinations.

Note: Marked with AMD logo.

0257526 0029449 4 KM AMD2

T-46-19-13

ORDERING INFORMATION Commercial Products (MMI Marking Only)

AMD programmable logic products for commercial applications are available with several ordering options. The order number (Valid Combination) is formed by a combination of: **a. Family Type**

- b. Number of Array Inputs
- c. Output Type
- d. Number of Outputs
- e. Speed
- f. Power
- g. Operating Conditions
- h. Package Type
- Optional Processing

PAL20R8 Family

Vaild Combinations			
PAL20L8, B-2 CNS, CFN, CJS			
PAL20R8,			
PAL20R6,	B, A,	CNS, CNL, CJS	
PAL20R4	A∙2		

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, and to check on newly released combinations.

Note: Marked with MMI logo.

ORDERING INFORMATION APL Products (AMD Marking Only)

T-46-19-13

AMD programmable logic products for Aerospace and Defense applications are available with several ordering options. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of: **a.** Family Type

- b. Number of Array Inputs
- c. Output Type
- d. Number of Outputs
- e. Speed
- f. Device Class
- g. Package Type
- h. Lead Finish

Valid Combinations			
PAL20L8			
PAL20R8	-12,		
PAL20R6	-15	/BLA, /B3A	
PAL20R4			

Group A Tests

Group A Tests consist of Subgroups: 1, 2, 3, 7, 8, 9, 10, 11.

Military Burn-In

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Methods 1015, Conditions A through E. Test conditions are selected at AMD's option.

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device, Consult the local AMD sales office to confirm availability of specific valid combinations, to check on newly released combinations, and to obtain additional data on AMD's standard military grade products.

Note: Marked with AMD logo.

28E D 📰 0257526 0029451 2 📰 AMD2

ORDERING INFORMATION APL Products (MMI Marking Only)

T-46-19-13

AMD programmable logic products for Aerospace and Defense applications are available with several ordering options. APL (Approved Products List) products are fully compliant with MIL-STD-883 requirements. The order number (Valid Combination) is formed by a combination of: **a.** Family Type **b.** Number of Array Inputs

- c. Output Type
- d. Number of Outputs
- e. Speed
- f. Power
- g. Operating Conditions
- h. Package Type
- I. Optional Processing

Valid Combinations				
PAL20L8		MJS/883B,		
PAL20R8	B, A,	MW/883B,		
PAL20R6	A-2	ML/883B		
PAL20R4				

Valid Combinations

The Valid Combinations table lists configurations planned to be supported in volume for this device. Consult the local AMD sales office to confirm availability of specific valid combinations, and to check on newly released combinations.

Note: Marked with MMI logo.

Group A Tests

Group A Tests consist of Subgroups: 1, 2, 3, 7, 8, 9, 10, 11.

Military Burn-In

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Methods 1015, Conditions A through E. Test conditions are selected at AMD's option.

FUNCTIONAL DESCRIPTION Standard 24-pin PAL Family

The standard 24-pin PAL family is comprised of four different devices, including both registered and combinatorial devices. All parts are produced with a fuse link at each input to the AND gate array, and connections may be selectively removed by applying appropriate voltages to the circuit. Utilizing an easily-implemented programming algorithm, these products can be rapidly programmed to any customized pattern. Information on approved programmers can be found in the Programmer Reference Guide. Extra test words are pre-programmed during manufacturing to ensure extremely high field programming yields, and provide extra test paths to achieve excellent parametric correlation.

Variable Input/Output Pin Ratio

The registered devices have twelve dedicated input lines, and each combinatorial output is an I/O pin. The PAL20L8 has fourteen dedicated input lines, and only six of the eight combinatorial outputs are I/O pins. Buffers for device inputs have complementary outputs to provide user-programmable input signal polarity. Unused input pins should be tied to Vcc or GND.

Programmable Three-State Outputs

Each output has a three-state output buffer with threestate control. On combinatorial outputs, a product term controls the buffer, allowing enable and disable to be a function of any product of device inputs or output feedback. The combinatorial output provides a bidirectional I/O pin, and may be configured as a dedicated input if the buffer is always disabled. On registered outputs, an input pin controls the enabling of the three-state outputs.

Registers with Feedback

Registered outputs are provided for data storage and synchronization. Registers are composed of D-type flipflops that are loaded on the LOW-to-HIGH transition of the clock input.

Power-Up Reset

All flip-flops power-up to a logic LOW for predictable system initialization. Outputs of the PAL20R8 Family will be HIGH due to the active-low outputs. The Vcc rise

must be monotonic and the reset delay time is 1000 ns maximum.

Register Preload

T-46-19-13

Applies to -7 (-12 Mil), -10 (-15 Mil), Series Only

The register on the listed Series can be preloaded from the output pins to facilitate functional testing of complex state machine designs. This feature allows direct loading of arbitrary states, making it unnecessary to cycle through long test vector sequences to reach a desired state. In addition, transitions from illegal states can be verified by loading illegal states and observing proper recovery.

Security Fuse

After programming and verification, a PAL20R8 Family design can be secured by programming the security fuse. Once programmed, this fuse defeats readback of the internal programmed pattern by a device programmer, securing proprietary designs from competitors. When the security fuse is programmed, the array will read as if every fuse is unprogrammed. An exception is the -7 (-12 Mil) Series, where the array will read as if every fuse is programmed.

Pinouts

All members of the PAL20R8 Family have the same SKINNYDIP pinouts independent of technology, performance, and operating conditions. Because the 24-pin SKINNYDIP requires four no-connects when mapped into the 28-pin PLCC/LCC packages, the PLCC/LCC pinouts can vary.

Two different PLCC pinouts are offered. Newer devices and all future devices will follow the JEDEC electronics committee's standard pinout ("JEDEC pinout") with noconnects on pins 1, 8, 15, and 22. The devices following this pinout are the -7, -10, and B-2 Series. Older devices retain their original pinouts, with no-connects on pins 5, 8, 11, and 19. These include the B, A, and A-2 Series.

PAL20R8 Family devices with the MMI marking indicate the PLCC pinout by the package designator: FN indicates JEDEC, and NL indicates non-JEDEC. Devices with the AMD marking all follow the JEDEC pinout. Two different LCC pinouts are offered for military products. Newer devices and all future devices will follow the JEDEC pinout with no-connects on pins 1, 8, 15, and 22. These include the -12 and -15 Series. Older devices retain their original pinouts, with no-connects on pins 4, 11, 18, and 25. These include the B, A, and A-2 Series.

Series	Com'i PLCC No-connects	Mil LCC No-connects
-7, -10, B-2	1, 8, 15, 22 (JEDEC)	N/A
-12, -15	N/A	1, 8, 15, 22 (JEDEC)
B, A, A-2	5, 8, 11, 19	4, 11, 18, 25

Quality and Testability

T-46-19-13

The PAL20R8 Family offers a very high level of built-in quality. Extra programmable fuses provide a means of verifying performance of all AC and DC parameters. In addition, this verifies complete programmability and functionality of the device to provide the highest programming yields and post-programming functional yields in the industry.

Technology

The high-speed -7 (-12 Mil) and -10 (-15 Mil) Series are fabricated with AMD's advanced oxide-isolated bipolar process. This process reduces parasitic capacitances and minimum geometries to provide higher performance. The array connections are formed with proven PtSi fuses for the -7 and TiW fuses for the -10. The B, B-2, A, and A-2 Series are fabricated with AMD's junction-isolated process, utilizing TiW fuses.

LOGIC DIAGRAM DIP (JEDEC PLCC and LCC) Pinouts

See Connection Diagrams for B, A, A-2 Series PLCC/LCC Pinouts

T-46-19-13

12350-007A

T-46-19-13

-2

12350-008A

LOGIC DIAGRAM DIP (JEDEC PLCC and LCC) Pinouts

T-46-19-13

See Connection Diagrams for B, A, A-2 Series PLCC/LCC Pinouts

12350-009A

28E D

LOGIC DIAGRAM **DIP (JEDEC PLCC and LCC) Pinouts** See Connection Diagrams for B, A, A-2 Series PLCC/LCC Pinouts

T-46-19-13

12350-010A

28E D 🗰 0257526 0029458 5 🖬 AMD2

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	55°C to +125°C
Supply Voltage with Respect to Ground	–0.5 V to +7.0 V
DC Input Voltage	-1.2 V to Vcc + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to V _{CC} + 0.5 V
Static Discharge Voltage	2001 V

OPERATING RANGES /

with Respect to Ground

mmercial (C) Devices	T-46-19-13
Ambient Temperature (TA)	
Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc)	

+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$l_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$	2.4		V
V _{OL}	Output LOW Voltage	$I_{OL} = 24 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	··	0.5	V
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V _
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all inputs (Note 1)		0.8	V
VI	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, V_{CC} = Min.$		-1.2	v
<u> </u>	Input HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max. (Note 2)		25	μA
In	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 2)		-250	μΑ
lı	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		1	mA
Іотн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.7 V_r V_{CC} = Max.$ $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 2)}$		100	μA
lozl	Off-State Output Leakage Current LOW	$V_{OUT} = 0.4 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL}$ (Note 2)		-100	μA
Isc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
	Supply Current	V _{IN} = 0 V, Outputs Open (I _{OUT} = 0 mA) V _{CC} = Max.		210	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of $I_{\rm IL}$ and $I_{\rm OZL}$ (or $I_{\rm IH}$ and $I_{\rm OZH}$).

Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

59E D ■ 0257526 0029459 7 SCMA

CAPACITANCE (Note 1)

CAPACITA	NCE (Note 1)			T-46-19-13	
Parameter Symbol	Parameter Description	Test Conditions	5	Тур.	Unit
Cin	Input Capacitance	V _{IN} = 2.0 V	$V_{CC} = 5.0 V$ $T_A = +25^{\circ}C$	7	
Солт	Output Capacitance	V _{OUT} = 2.0 V	f = 1 MHz	8	pF

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

Parameter Symbol	Parameter Des	Parameter Description					Max.	Unit			
tPD	Input or Feedba				20L8, 20R6		7.5	ns			
	Combinatorial (Output 1 C	Output S	witching	20R4	3	7 115	113			
ts	Setup Time from	m Input or Feedt	back to (Clock		7		. NS			
tн	Hold Time					0		ns			
tco	Clock to Output	t] [] [3	6.5	ns
tcF	Clock to Feedb	ack (Note 4)						3	ns		
tskew	Skew Between	Registered Outp	legistered Outputs (Note 5)				1	ns			
twL	Clock Width	LOW	W		20R4	5		ns			
twн		HIGH				5		ns			
	Maximum	External Fee	edback	1/(ts + tco)		74		MHz			
fmax	Frequency	Internal Feed	dback	$1/(t_{S} + t_{CF})$		100		MHz			
	(Note 6)	No Feedbac	:k	1/(twн + tw∟)				100		MHz	
tezx	OE to Output E	nable				3	8	ns			
texz	OE to Output D	lisable	able			3	8	ns			
tea	Input to Output Enable Using Product Term Control			erm Control	20L8, 20R6	3	10	ns			
ten	Input to Output	Disable Using F	Product [*]	Term Control	20R4	3	10	ns			

- 2. See Switching Test Circuit for test conditions.
- 3. Output delay minimums are measured under best-case conditions.
- 4. Calculated from measured fMAX internal.
- 5. Skew is measured with all outputs switching in the same direction.
- 6. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage with	
Respect to Ground	–0.5 V to +7.0 V
DC Input Voltage	-1.2 V to Vcc + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to V _{CC} + 0.5 V
Static Discharge Voltage	2001 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or

above these limits is not implied. Exposure to Absolute Maxi-

mum Ratings for extended periods may affect device reliability. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given

OPERATING RANGES

Military (M) Devices (Note 1)	
Operating Case (Tc)	

T-46-19-13

Temperature	-55°C to +125°C
Supply Voltage (Vcc)	
with Respect to Ground	+4.50 V to +5.50

+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at Tc = +25°C , +125°C, and -55°C per MIL-STD-883.

DC CHARACTERISTICS over MILITARY (Note 2)	operating ranges	unless otherwise spe	cified
(Note 2)	RICES IN		

Parameter			r	.	
Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$\label{eq:Vinequality} \begin{array}{l} I_{\text{OH}} = -2 \text{mÅ} & V_{\text{IN}} = V_{\text{IH}} \text{ or } V_{\text{IL}} \\ V_{\text{CC}} = \text{Min.} \end{array}$	2.4		V.
Vol	Output LOW Voltage	$I_{OL} = 12 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$		0.5	۷
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V
Vi	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, V_{CC} = \text{Min.}$		-1.2	V
- III	Input HIGH Current	V _{IN} = 2.4 V, V _{CC} = Max. (Note 4)		25	μA
hr.	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 4)		-250	<u>μ</u> Α
lı –	Maximum Input Current	$V_{iN} = 5.5 V, V_{CC} = Max.$		1	 mA
lozh	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.4 \text{ V}, V_{CC} = \text{Max.}$ $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 4)}$		100	μA
lozi	Off-State Output Leakage Current LOW	$V_{OUT} = 0.4 \text{ V}, V_{CC} = \text{Max.}$ $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 4)}$		-100	μA
lsc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 5)	-30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open ($I_{OUT} = 0 mA$) $V_{CC} = Max$.		210	mA

Notes:

are not tested.

- 2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
- 4. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- 5. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

ADV MICRO PLA/PLE/ARRAYS

- E 0257526 0029461 5 E AMD2

T-46-19-13

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditions	5	Тур.	Unit
C _{iN}	Input Capacitance	V _{IN} = 2.0 V	$V_{CC} = 5.0 V$ $T_{A} = +25^{\circ}C$	9	
Солт	Output Capacitance	V _{OUT} = 2.0 V	f = 1 MHz	10	pF

28E D

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 2) Parameter Mìn. Symbol **Parameter Description** (Note 3) Max. Unit **t**PD Input or Feedback to 20L8, 20R6 3 12.5 ns Combinatorial Output 1 Output Switching 20R4 3 12 Setup Time from Input or Feedback to Clock 12 ts ns Hold Time tн 0 ns Clock to Output 3 tco 11 الأراقية ns S Clock to Feedback (Note 4) tcF $\mathcal{C}_{\mathcal{S}}$ 6.5 ns Skew Between Registered Outputs (Note 5) tskew 1 ns Clock Width 20R8, 20R6 10 ns twL LOW ୍ଷ HIGH 🛸 twн 20R4 8 ns External Feedback 1/(ts + tco)43.4 MHz Maximum Internal Feedback 54 MHz **f**MAX $1/(t_{s} + t_{CF})$ Frequency (Note 6) 🦻 No Feedback 55.5 $1/(t_{WH} + t_{WL})$ MHz tpzx OE to Output Enable (Note 7) 3 20 'ns OE to Output Disable (Note 7) 3 20 texz ns **t**EA Input to Output Enable Using Product Term Control (Note 7) 3 20 ns 20L8, 20R6 20R4 Input to Output Disable Using Product ter Term Control (Note 7) 3 20 ns

- 2. See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 3. Minimum value for tpp, tco, tpzx, tpxz, teA, and teR parameters should be used for simulation purposes only and are not tested.
- 4. Calculated from measured fMAX internal.
- 5. Skew is measured with all outputs switching in the same direction.
- 6. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- 7. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.

T-46-19-13

MEASURED SWITCHING CHARACTERISTICS Vcc = 5.25 V, T_A = 75°C (Note 1)

tep vs. Number of Outputs Switching

10294-005A

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where tPD may be affected.

T-46-19-13

CURRENT VS. VOLTAGE (I-V) CHARACTERISTICS $V_{CC} = 5.0 \text{ V}, \text{ } T_{A} = 25^{\circ}\text{C}$

-0.6 -0.4 -0.2 -10 -10 -15 -15 -10 -15

Output, LOW

28E D 🛤 0257526 0029464

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to V _{CC} + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to Vcc Max.
DC Input Current	-30 mA to +5 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

OPERATING RANGES Commercial (C) Devices

Ambient Temperature (TA)	
Operating in Free Air	0°0
Supply Voltage (Vcc)	
with Respect to Ground	+4.

0°C to +75°C

+4.75 V to +5.25 V

SCMA I

0

T-46-19-13

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA} V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$	2.4		V
Vol	Output LOW Voltage	$l_{OL} = 24 \text{ mA} \qquad V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$		0.5	v
V1H	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	v
V	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, V_{CC} = \text{Min}.$		-1.5	V
l _{IH}	Input HIGH Current	V _{IN} = 2.7 V, V _{CC} = Max. (Note 2)		25	μA
hi	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 2)		-250	μA
h	Maximum Input Current	$V_{IN} = 5.5 V, V_{CC} = Max.$	ļ	100	μA
lozh	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.7 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL}$ (Note 2)		100	μA
lozu	Off-State Output Leakage Current LOW	$V_{OUT} = 0.4 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL}$ (Note 2)		-100	μA
lsc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 3)	-30	130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open ($I_{OUT} = 0 mA$) $V_{CC} = Max$.		210	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of $I_{\rm H}$ and $I_{\rm OZL}$ (or $I_{\rm IH}$ and $I_{\rm OZH}).$

3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

ADV MICRO PLA/PLE/ARRAYS

0257526 0029465 2 🛲 AMD2 28E D <u>_</u>2

CAPACITANCE (Note 1)

CAPACITANCE (Note 1)				T.	-46-19	-13
Parameter Symbol	Parameter Description	Test Conditio	ns	 _	Тур.	Unit
CiN	Input Capacitance	V _{IN} = 2.0 V	$V_{CC} = 5.0 V$	CLK, OE	12	1
			T _A = 25°C	Other Inputs	7] pF
Солт	Output Capacitance	V _{OUT} = 2.0 V	f = 1 MHz	Outputs	8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

Parameter Symbol	Parameter Description				Min. (Note 3)	Max.	Unit
t _{PD}	Input or Feedback to Combinatorial Output			20L8, 20R6 20R4	3	10	ns
ts	Setup Time from	m Input or Feedback to	Clock		10		ns
tн	Hold Time				0		ns
tco	Clock to Output				2	8	ns
tcF	Clock to Feedb	ack (Note 4)		20R8, 20R6		7	ns
tw.	Clock Width	LOW		20R4	7		ns
t _{WH}		HIGH	HIGH		7		ПS
	Maximum	External Feedback	1/(ts + tco)		55.5		MHz
fmax	Frequency	Internal Feedback	1/(ts + tcF)	-	58.8		MHz
	(Note 5)	No Feedback	1/(t _{WH} + t _{WL})		71.4		MHz
tpzx	OE to Output Enable				1	10	ns
texz	OE to Output D	DE to Output Disable			1	10	ns
tEA	Input to Output Enable Using Product Term Control			20L8, 20R6	3	10	ns
ten	Input to Output	Disable Using Product	Term Control	20R4	3	10	ns

- 2. See Switching Test Circuit for test conditions.
- 3. Output delay minimums are measured under best-case conditions.
- 4. Calculated from measured f_{MAX} internal.
- 5. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where the frequency may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with	
Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-0.5 V to +5.5 V
DC Output or I/O Pin Voltage	-0.5 V to Vcc Max.
DC Input Current	-30 mA to + 5 mA

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maxi-

mum Ratings for extended periods may affect device reliabil-

ity. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given OPERATING RANGES

Military (M) Devices (Note 1)	T-46-19-13
Ambient Temperature (TA)	· · · ·
Operating in Free Air	-55°C Min.
Operating Case (Tc)	
Temperature	+125°C Max.
Supply Voltage (Vcc)	
with Respect to Ground	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at Tc = +25°C, +125°C, and -55°C per MIL-STD-883.

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$I_{OH} = -2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2.4		V
VoL	Output LOW Voltage	$I_{OL} = 12 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$		0.5	V
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		۷
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V.
Vi	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}, V_{CC} = \text{Min}.$		-1.5	v
liH	Input HIGH Current	V _{IN} = 2.4 V, V _{CC} = Max. (Note 4)		25	μA
ľι	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 4)		-250	μA
lı –	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		100	μA
Югн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.7 V$, $V_{CC} = Max$. $V_{IN} = V_{IH} \text{ or } V_{IL}$ (Note 4)		100	μA
lozL	Off-State Output Leakage Current LOW	$V_{OUT} = 0.4 V, V_{CC} = Max.$ $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 4)$		-100	μA
Isc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 5)	-30	-130	mA
	Supply Current	$V_{IN} = 0$ V, Outputs Open ($l_{OUT} = 0$ mA) $V_{CC} = Max$.		210	mA

DC CHARACTERISTICS over MILITARY operating ranges unless otherwise specified (Note 2)

Notes:

are not tested.

2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

- 3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
- 4. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- 5. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

ADV MICRO PLA/PLE/ARRAYS

28E D 🔳 025

0257526 0029467 6 MM AMD2

CAPACITANCE (Note 1)

Parameter Symbol	Parameter Description	Test Conditio	ns		Тур.	Unit
CIN	Input Capacitance	V _{IN} = 2.0 V	V _{CC} = 5.0 V	CLK, ÕË	12	
			T _A = 25°C	Other Inputs	7] pF
Солт	Output Capacitance	V _{OUT} = 2.0 V	f = 1 MHz	Outputs	8	

Note:

1. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where capacitance may be affected.

Parameter Symbol	Parameter Description				Min. (Note 3)	Max.	Unit
tpd.		Input or Feedback to Combinatorial Output			3	15	ns
ts	Setup Time from	m Input or Feedback to	Clock		15		ns
tн	Hold Time				0		ns
tco	Clock to Output				2	13	ns
t CF	Clock to Feedb	ack (Note 4)				12	ns
tw.	Clock Width	LOW		20R8, 20R6	10		ns
twн		HIGH		20R4	10		ns
	Maximum	External Feedback	1/(ts + tco)		35.7		MHz
fмах	Frequency	Internal Feedback	$1/(t_{S} + t_{CF})$		37		MHz
	(Note 5)	No Feedback	No Feedback 1/(twn + twL)		50		MHz
tpzx	OE to Output E	nable (Note 6)			1	15	ns
texz	OE to Output D	isable (Note 6)			1	15	ns
t _{EA}	Input to Output Term Control (I	Enable Using Product Note 6)	20L8, 20R6	3	15	ns	
ler	Input to Output Term Control (I	Disable Using Product Note 6)		20R4	3	15	ns

- 2. See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 3. Minimum value for tPD, tCO, tPZX, tPXZ, tEA, and tER parameters should be used for simulation purposes only and are not tested.
- 4. Calculated from measured fMAX internal.
- 5. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- 6. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.

T-46-19-13

ADV MICRO PLA/PLE/ARRAYS 59E D 0257526 0029468 8 MAMD2

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	–55°C to +125°C
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-1.5 V to Vcc + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to V _{CC} + 0.5 V

OPERATING RANGES

Commercial (C) Devices	T-46-19-13
Ambient Temperature (TA)	
Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc)	
with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

Parameter	<u> </u>			<u></u>	
Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Vон	Output HIGH Voltage	I _{OH} = -3.2 mA V _{IN} = V _{IH} or V _{IL}	2.4		V
Vol	Output LOW Voltage	$I_{OL} = 24 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	A	0.5	- V
V _{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 1)	2.0		٧
VIL	Input LOW Voltage			0.8	V
V	Input Clamp Voltage	lin = -18 mA, Vcc = Min		-1.5	· V
liH	Input HIGH Current	VIN = 2.7 V, Vcc = Max. (Note 2)		25	μA
l <u>ار</u>	Input LOW Current	$V_{IN} = 0.4 V_F V_{CC} = Max.$ (Note 2)		-250	μA
lı lı	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		100	μA
Іогн	Off-State Output Leakage Current HIGH	Vout = 2.7 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μA
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μA
Isc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open ($I_{OUT} = 0 mA$) $V_{CC} = Max$.		210	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.

2. I/O pin leakage is the worst case of $I_{\rm IL}$ and $I_{\rm OZL}$ (or $I_{\rm IH}$ and $I_{\rm OZH}$).

3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

ADV MICRO PLA/PLE/ARRAYS 28E D MM 0257526 0029469 T MMD2

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 1)

Parameter Symbol	Parameter Des	scription T-46	5-19-13		Min.	Max.	Unit
tpd	Input or Feedba Combinatorial (20L8, 20R6 20R4		15	ns
ts	Setup Time from	m Input or Feedback to (Clock		15		ns
tн	Hold Time	<u></u>			0		ns
tco	Clock to Output	t or Feedback		20R8		12	ns
twL	Clock Width	LOW		20R6	10		ns
twn	1	HIGH		20R4	12		ns
	Maximum	External Feedback	1/(ts + tco)		37		MHz
fmax	Frequency (Note 2)	No Feedback	1/(twn + twL)	6	45	\$	MHz
tpzx	OE to Output Enable				y es	<u></u> 15	ns
texz	OE to Output D	to Output Disable			12.4	12	ns
tEA	Input to Output Enable Using Product Term Control			20L8, 20R6	and the second second	18	ns
ten	Input to Output	Disable Using Product	Term Control	20R4		15	ns

- 1. See Switching Test Circuit for test conditions
- 2. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-1.5 V to + 5.5 V
DC Output or I/O Pin Voltage	5.5 V

Stresses above those listed under Absolute Maximum Rat-

ings may cause permanent device failure. Functionality at or

above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliabil-

ity. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given

OPERATING RANGES

·····	
Military (M) Devices (Note 1)	T-46-19-13
Ambient Temperature (TA)	
Operating in Free Air	–55°C Min.
Operating Case (Tc)	
Temperature	+125°C Max.
Supply Voltage (Vcc)	
with Respect to Ground	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at To = +25°C, +125°C, and -55°C per MIL-STD 883.

DC CHARACTERISTICS over MILITARY operatin (Note 2)	a rangos	unloss otherwise energies	
(Note 2)	y runges	dimess of the wise specified	
	199 M	Ser 100 Law	

Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
Voh	Output HIGH Voltage	IoH = -2 mA VIN = VIH or VIL Vcc = Min.	2.4	, indixi	V
Vol	Output LOW Voltage	$loc = 12 \text{ mA} V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	Ś	0.5	v
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH) Voltage for all Inputs (Note 3)	2.0		Ŷ
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V
VI	Input Clamp Voltage	$l_{IN} = -18 \text{ mA}, V_{CC} = Min.$		-1.5	v
líH	Input HIGH Current	VIN \$ 2.4 V, Vcc = Max. (Note 4)		25	 μΑ
<u>Ιι.</u>	Input LOW Current	ViN = 0.4 V, Vcc = Max. (Note 4)	·	-250	μA
4	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.			mA
ЮZH	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.4 V, V_{CC} = Max.$ $V_{IN} = V_{IH} \text{ or } V_{IL} (Note 4)$		100	μA
lozl	Olf-State Output Leakage Current LOW	Vout = 0.4 V, Voc = Max. V _{IN} = V _{IH} or V _{IL} (Note 4)		-100	μA
lsc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 5)	-30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open ($I_{OUT} = 0 mA$) $V_{CC} = Max$.		210	mA

Notes:

are not tested.

2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

- 3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
- 4. I/O pin leakage is the worst case of I_{IL} and I_{OZL} (or I_{IH} and I_{OZH}).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 1) T-46-19-13

Parameter Symbol	Parameter Description					Max.	Uniț
tpD	Input or Feedba Combinatorial C		20L8, 20R6 20R4		20	ΠS	
ts	Setup Time from	Time from Input or Feedback to Clock			20		ns
tн	Hold Time	old Time			0		ns
tco	Clock to Output	t or Feedback	or Feedback			15	ns
tw.		LOW		20R8, 20R6	12	i ns	
twn	Clock Width	HIGH		20R4	12		ns
fmax	Maximum	External Feedback	$1/(t_{s} + t_{co})$		28.5		MHz
	Frequency (Note 2)	No Feedback	1/(twn + twL)	l.	A41.6		MHz
tpzx	OE to Output E	nable (Note 3)				20	ns
tpxz	OE to Output D	isable (Note 3)			(A)	20	ns
tEA	Input to Output Term Control (I	Enable Using Product Note 3)	¢.	20L8, 20R6	1 Acres	25	ns
ter	Input to Output Term Control (I	Disable Using Product Note 3)	AN S	20R4		20	ŕńs

Notes:

- See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10 and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 2. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- 3. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.

PAL20R8B Series (Mil)

28E D 0257526 0029472 T 🖿 AMD2 4

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	- −55°C to +125°C
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-1.5 V to V _{cc} + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to V _{cc} + 0.5 V

OPERATING RANGES Ç

ommercial (C) Devices
Ambient Temperature (TA)
Operating in Free Air

T-46-19-13

Ambient Temperature (T _A)	
Operating in Free Air	0°C to +75°C
Supply Voltage (Vcc)	. •
with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

DC CHARA specified	CTERISTICS over COMM	ERCIAL operating ranges unless	thêrwise	<u></u>
Parameter Symbol	Parameter Description	Test Conditions	Min. Max.	Unit
Vон	Output HIGH Voltage	$I_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$	2.4	V
Vol	Output LOW Voltage	Ice = 24 mA VIN = VIH or VIL Vcc = Min.	0.5	V .
VIH	Input HIGH Voltage		201	V

			1.5		1
VIH	Input HIGH Voltage	Guaranteed Input Logical HIGH	2.0		V
V _{iL}	Input LOW Voltage	Guaranteed Input Logical LOW		0.8	V
VI	Input Clamp Voltage	In = +18 mA, Vec = Min	<u> </u>	1.5	v
Ін	Input HIGH Current	Vin = 2.7 V, Vcc = Max. (Note 2)		25	μA
<u> </u>	Input LOW Current	VIN = 0.4 V, Vcc = Max. (Note 2)		-250	μA
<u> </u>	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.	<u> -</u>	100	μΑ
lozh	Off-State Output Leakage Current HIGH	Vout = 2.7 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μA
lozl	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μA
lsc	Output Short-Circuit Current	Vour = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open ($I_{OUT} = 0 mA$) $V_{CC} = Max$.		105	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of IIL and IozL (or IIH and IozH).
- 3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. VOUT = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Des	cription T-46-	-19-13		Min.	Max.	Unit
tPD	Input or Feedba Combinatorial C			20L8, 20R6 20R4		25	ns
ts	Setup Time from	n Input or Feedback to	Clock		25		ns
tн	Hold Time				0		ns
tco	Clock to Output					15	ns
tcr	Clock to Feedba	ack (Note 2)		20R8, 20R6		10	ns
twi	Clock Width	LOW		20R4	15		ns
t _{WH}		HIGH			15	A	ns
	Maximum	External Feedback	1/(ts + tco)		<u>~25</u>	4	MHz
fmax	Frequency	Internal Feedback	$1/(t_{S} + t_{CF})$		28.5		MHz
	(Note 3)	No Feedback	$1/(t_{WH} + t_{WL})$		33.3 🔩	and a state of the	MHz
tezx	OE to Output Er	nable			A Second	20	ns
texz	OE to Output Di	sable				20	ns
tEA	Input to Output Enable Using Product Term Control 20L8, 20R6			201.8, 20R6		25	ns
ter	Input to Output	Disable Using Product	Term Control	20R4 -		. 25	ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 1)

Notes:

- 1. See Switching Test Circuit for test conditions.
- Calculated from measured fMAX internal.
 3. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected,

PAL20R8B-2 Series (Com'l)

EQMA 227526 0029474 3 E AMD2

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	0.5 V to +-7.0 V
DC Input Voltage	-1.5 V to V _{CC} + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to V _{CC} + 0.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliabil-

ity. Programming conditions may differ.

OPERATING RANGES

Commercial (C) Devices Ambient Temperature (T_A)

T-46-19-13

0°C to +75°C

Supply Voltage (Vcc) with Respect to Ground

Operating in Free Air

.

+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

DC CHARACTERISTICS over COMMERCIAL operating ranges unless otherwise specified Parameter Symbol **Parameter Description Test Conditions** Міn. Max. Unit Vон Output HIGH Voltage Iон = -3.2 mA VIN = VIH or VIL 2.4 V Vcc = Min. VOL Output LOW Voltage VIN = VIH or VIL tor = 24 mA 0.5 V Vcc = Min. VIH Input HIGH Voltage Guaranteed Input Logical HIGH 2.0 V Voltage for all Inputs (Note 1) ViL Guaranteed Input Logical LOW Voltage for all Inputs (Note 1) Input LOW Voltage 0.8 V es gir Odg Vi Input Clamp Voltage $I_{IN} = -18 \text{ mA}$, $V_{CC} = Min$ -1.5 ۷ lн Input HIGH Current VIN = 2.7 V Vcc = Max. (Note 2) 25 μA IL Input LOW Current وشتجد VIN = 0.4 V, Vcc = Max. (Note 2) -250 uА h Maximum Input Current $V_{IN} = 5.5 V$, $V_{CC} = Max$. 100 μA lozн Off-State Output Leakage Vout = 2.7 V, V_{cc} = Max. 100 μA **Current HIGH** VIN = VIH or VIL (Note 2) lozl Off-State Output Leakage $V_{OUT} = 0.4 V$, $V_{CC} = Max$. -100μA Current LOW VIN = VIH or VIL (Note 2) Isc Output Short-Circuit Current Vour = 0.5 V, Vcc = Max. (Note 3) --30 --130 mA lcc Supply Current $V_{IN} = 0 V$, Outputs Open (lout = 0 mA) 210 mA Vcc = Max.

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- 3. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

Parameter Symbol	Parameter Description T-46-19-13					Max.	Unit
teo	Input or Feedba Combinatorial (25	ns
ts	Setup Time from	n Input or Feedback to (25		ns	
tн	Hold Time				0		ns
tco	Clock to Output	<u> </u>				15	ns
tCF	Clock to Feedb	ack (Note 2)		20R8, 20R6		10	ns
tw	Clock Width	LOW		20R4	15		ns
twn		HIGH			15		ns
	Maximum	External Feedback	1/(ts + tco)		25		MHz
fmax	Frequency	Internal Feedback	$1/(t_{s} + t_{CF})$		28.5	2	MHz
	(Note 3)	No Feedback	1/(t _{WH} + t _{WL})		33,	and the second s	MHz
tezx	OE to Output E	nable	~		Constant a	20	ns
texz	OE to Output D	isable	53.95 1971 - 197			20	ns
t _{EA}	Input to Output	Output Enable Using Product Term Control 20L				25	ns
ter	Input to Output	Disable Using Product	Term Control	🥏 20R4 🧹		25	ns

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 1)

Notes:

- 1. See Switching Test Circuit for test conditions.
- Calculated from measured fMAX internal.
 These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

PAL20R8A Series (Com'l)

28E D 🗰 0257526 0029476 7 🖬 AMD2

10

3

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with	
Respect to Ground	–0.5 V to +7.0 V
DC Input Voltage	–1.5 V to +5.5 V
DC Output or I/O Pin Voitage	5.5 V

Stresses above those listed under Absolute Maximum Rat-

ings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliabil-

ity. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given

OPERATING RANGES

Military (M) Devices (Note 1)	1-40-19
Ambient Temperature (TA)	
Operating in Free Air	-55°C Min.
Operating Case (Tc)	
Temperature	+125°C Max.
Supply Voltage (Vcc)	
with Respect to Ground	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at To +25°C, +125°C, and -55°C per MIL-STO 883.

DC CHARACTERISTICS over MILITARY (Note 2)	operating ranges	unless otherwise	specified
(Note 2)		Carly Vine	

			D-4		÷
Parameter Symbol	Parameter Description	Test Conditions	"Min.	Max.	Unii
V _{OH}	Output HIGH Voltage	$loh = -2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = \text{Min.}$	214		۷
Vol	Output LOW Voltage		S.	0.5	V
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		V
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V
V _I	Input Clamp Voltage	$l_{\rm IN} = -18 {\rm mA}$, $V_{\rm CC} = {\rm Min}$.		-1.5	٧
ин 🖄	Input HIGH Current	V _{IN} = 2.4 V, V _{CC} = Max. (Note 4)		25	μA
١L	Input LOW Current	ViN = 0.4 V, Vcc = Max. (Note 4)		·	·μA
łı	Maximum Input Current	V _{IN} = 5.5 V, V _{CC} = Max.		. 1	mA
Іодн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.4 \text{ V}, V_{CC} = \text{Max.}$ $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 4)}$		100	μA
lozl	Off-State Output Leakage Current LOW	V _{OUT} = 0.4 V, V _{CC} = Max. V _{IN} = V _{IH} or V _{IL} (Note 4)		-100	μA
lsc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 5)	-30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open (lour = 0 mA) $V_{CC} = Max$.		210	mA

Notes:

are not tested.

2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

- 3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
- 4. I/O pin leakage is the worst case of IIL and IOZL (or IIH and IOZH).
- 5. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

T-46-19-13

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 1) Parameter Symbol **Parameter Description** Min. Max. Unit Input or Feedback to 20L8, 20R6 tpp 30 ns **Combinatorial Output** 20R4 Setup Time from Input or Feedback to Clock ts 30 ns Hold Time ţн 0 ns tco Clock to Output or Feedback 20 ns twL Clock Width LOW 20R8, 20R6 20 ns HIGH twн 20R4 20 ns Maximum External Feedback $1/(t_s + t_{co})$ 20 MHz **ÍMAX** Frequency 25 (Note 2) No Feedback $1/(t_{WH} + t_{WL})$ MHz OE to Output Enable (Note 3) **t**_{PZX} 25 ns OE to Output Disable (Note 3) texz 25 пs Input to Output Enable Using Product **t**EA Term Control (Note 3) 20L8, 20R6 30 ns 20R4 ter Input to Output Disable Using Product Term Control (Note 3) 30 ns

2

- 1. See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9, 10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.
- 2. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- 3. These parameters are not 100% tested, but are evaluated at initial characterization and at any time the design is modified where these parameters may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Amblent Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	-0.5 V to +7.0 V
DC Input Voltage	-1.5 V to Vcc + 0.5 V
DC Output or I/O Pin Voltage	-0.5 V to V _{cc} + 0.5 V

OPERATING RANGES T-46-19-13

Commercial (C) DevicesAmbient Temperature (TA)Operating in Free Air0°C to +75°C

Supply Voltage (Vcc)	
with Respect to Ground	+4.75 V to +5.25 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to Absolute Maximum Ratings for extended periods may affect device reliability. Programming conditions may differ.

specified	CTERISTICS over COMME		1 1	3	•
Parameter Symbol	Parameter Description	Test Conditions	Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$l_{OH} = -3.2 \text{ mA}$ $V_{IN} = V_{IH} \text{ or } V_{IE}$	2.4		V
VOL	Output LOW Voltage			0.5	V
Vin	Input HIGH Voltage	Guaranteed Input Logical HIGH	2,0		v
ViL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 1)		0.8	۲V
V	Input Clamp Voltage	IN = -18 mA, Vcc = Min		1.5	V
lin 🔗	Input HIGH Current	VIN = 2.7 V, Vcc = Max. (Note 2)		25	μA
հլ	Input LOW Current	VIN = 0.4 V Vcc = Max. (Note 2)		-250	μA
<u>h</u>	Maximum Input Current	Vin = 5.5 V, Vcc = Max.		100	μA
lozh	Off-State Output Leakage	Vout = 2.7 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		100	μA
lozi	Off-State Output Leakage Current LOW	Vout = 0.4 V, Vcc = Max. V _{IN} = V _{IH} or V _{IL} (Note 2)		-100	μΑ
Isc	Output Short-Circuit Current	Vout = 0.5 V, Vcc = Max. (Note 3)	-30	-130	mA
lcc	Supply Current	$V_{IN} = 0 V$, Outputs Open ($I_{OUT} = 0 mA$) $V_{CC} = Max$.		105	mA

- 1. These are absolute values with respect to device ground and all overshoots due to system and/or tester noise are included.
- 2. I/O pin leakage is the worst case of I_{IL} and I_{OZL} (or I_{IH} and I_{OZH}).
- Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second.
 Vout = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

SWITCHING CHARACTERISTICS over COMMERCIAL operating ranges (Note 1)

						•	
Parameter Symbol	Parameter Des		-46-19-13	3	Min.	Max.	Unit
t _{PD}	Input or Feedba Combinatorial C			20L8, 20R6 20R4		35	ns
ls	Setup Time from	m Input or Feedback to	Clock		35		ns
tн	Hold Time				0		ns
tco	Clock to Output	or Feedback		20R8, 20R6		25	ns
• tw.	Clock Width	LOW	LOW 20R4		25		ns
twн		HIGH			25		ns
f	Maximum	External Feedback	1/(ts + tco)		16		MHz
fмах	Frequency (Note 2)	No Feedback	1/(t _{WH} + t _{WL})		3205		MHz
tpzx	OE to Output E	nable			64 18	<u>_</u> 25	ns
tpxz	OE to Output Disable			A V	25	ns.	
tea	Input to Output	Enable Using Product 1	Ferm Control	20L8, 20R6	Van Berner	35	ns
ter	Input to Output	Disable Using Product	Term Control	20R4		35	ns

- 1. See Switching Test Circuit for test conditions
- 2. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.

ABSOLUTE MAXIMUM RATINGS

Storage Temperature	-65°C to +150°C
Ambient Temperature with Power Applied	-55°C to +125°C
Supply Voltage with Respect to Ground	–0.5 V to +7.0 V
DC Input Voltage	-1.5 V to +5.5 V
DC Output or I/O Pin Voltage	5.5 V

Stresses above those listed under Absolute Maximum Ratings may cause permanent device failure. Functionality at or

above these limits is not implied. Exposure to Absolute Maxi-

mum Ratings for extended periods may affect device reliabil-

ity. Programming conditions may differ. Absolute Maximum Ratings are for system design reference; parameters given

OPERATING RANGES T-46-19-13

IAMD2

Military (M) Devices (Note 1)

Ambient Temperature (T _A) Operating in Free Air	-55°C to +125°C
Supply Voltage (Vcc) with Respect to Ground	+4.50 V to +5.50 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

Note:

1. Military products are tested at T_C = +25°C, +125°C, and -55°C per MIL-STD-883.

-30

-130

105

mA

mΑ

Parameter Symbol	Parameter Description	Test Conditions	_Min.	Max.	Unit
V _{OH}	Output HIGH Voltage	$loH = -2 \text{ mA} V_{IN} = V_{IH} \text{ or } V_{IL}$ $V_{CC} = Min.$	2,4		v
VOL	Output LOW Voltage		S.	0.5	V
ViH	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for all Inputs (Note 3)	2.0		v
VIL	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs (Note 3)		0.8	V
VI	Input Clamp Voltage	$I_{IN} = -18 \text{ mA}$, $V_{CC} = \text{Min.}$		-1.5	V
liH	Input HIGH Current	V _{IN} = 2.4 V, V _{CC} = Max. (Note 4)		25	μA
1 _{IL}	Input LOW Current	V _{IN} = 0.4 V, V _{CC} = Max. (Note 4)		-250	μA
4	Maximum Input Current	$V_{IN} = 5.5 V, V_{CC} = Max.$	······	1	mA
Іогн	Off-State Output Leakage Current HIGH	$V_{OUT} = 2.4 \text{ V}, V_{CC} = \text{Max.}$ $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 4)}$		100	μA
lozl	Off-State Output Leakage	$V_{OUT} = 0.4 V, V_{CC} = Max.$		-100	μA

Notes:

Isc

lcc

are not tested.

2. For APL Products, Group A, Subgroups 1, 2, and 3 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

Vcc = Max.

 $V_{IN} = V_{IH} \text{ or } V_{IL} \text{ (Note 4)}$

Vout = 0.5 V, Vcc = Max. (Note 5)

 $V_{IN} = 0 V$, Outputs Open ($I_{OUT} = 0 mA$)

- 3. VIL and VIH are input conditions of output tests and are not themselves directly tested. VIL and VIH are absolute voltages with respect to device ground and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.
- 4. I/O pin leakage is the worst case of I_{IL} and I_{OZL} (or I_{IH} and $I_{OZH}).$

Output Short-Circuit Current

Current LOW

Supply Current

5. Not more than one output should be tested at a time. Duration of the short-circuit should not exceed one second. Vour = 0.5 V has been chosen to avoid test problems caused by tester ground degradation.

SWITCHING CHARACTERISTICS over MILITARY operating ranges (Note 1)

T-46-19-13

Parameter Symbol	Parameter Description					Max.	Unit
tpd	Input or Feedba Combinatorial (20L8, 20R6 20R4		50	ns
ts	Setup Time from	m Input or Feedback to	Clock		50		ns
tн	Hold Time				0		ns
tco	Clock to Output	t or Feedback				25	ns
twr.	Clock Width	LOW		20R8, 20R6	25		ns
twн		HIGH	HIGH		25		ns
fмах	Maximum Frequency	External Feedback	1/(ts + tco)		13.3		MHz
	(Note 2)	No Feedback	1/(twn + twL)		20		MHz
tezx	OE to Output E	nable (Note 3)			(A 14	25	ns
t PXZ	OE to Output D	isable (Note 3)		R Charles	5.	25	ns
tea	Input to Output Enable Using Product Term Control (Note 3)				12 and	45	ns
ten	Input to Output Term Control (I	Disable Using Product Note 3)	(A)	20R4		45	ns

Notes:

1. See Switching Test Circuit for test conditions. For APL products Group A, Subgroups 9:10, and 11 are tested per MIL-STD-883, Method 5005, unless otherwise noted.

3

- 2. These parameters are not 100% tested, but are calculated at initial characterization and at any time the design is modified where frequency may be affected.
- 3. These parameters are not 100% tested, but are evaluated a initial characterization and at any time the design is modified where these parameters may be affected.

KEY TO SWITCHING WAVEFORMS

KS000010-PAL

T-46-19-13

SWITCHING TEST CIRCUIT

	S ₁		Commercial		Military		Measured	
Specification		CL	R ₁	R ₂	R ₁	R ₂	Output Value	
tpd, tco, tcf	Closed						1.5 V	
tpzx, tea	$Z \rightarrow H$: Open $Z \rightarrow L$: Closed	50 pF	200 Ω	390 Ω	390 Ω	750 Ω	1.5 V	
tpxz, ter	$H \rightarrow Z$: Open L $\rightarrow Z$: Closed	5 pF	5 pF				H →Z: V _{OH} – 0.5 V L →Z: V _{OL} + 0.5 V	

PAL20R8 Family

2-147

INPUT/OUTPUT EQUIVALENT SCHEMATICS

T-46-19-13

۰

T-46-19-13

OUTPUT REGISTER PRELOAD Applies to -7 (-12 Mil) Series Only

The preload function allows the register to be loaded from the output pins. This feature aids functional testing of sequential designs by allowing direct setting of output states. The procedure for preloading follows.

- 1. Raise Vcc to Vcch.
- 2. Set \overline{OE} to V_{IHP} to disable output registers.
- 3. Raise pin 2 to V_{HH} to enter preload mode.
- Apply either V_{HH} or V_{ILP} to all registered outputs. Use V_{HH} to preload a LOW in the flip-flop; use V_{ILP} to

preload a HIGH in the flip-flop. Leave combinatorial outputs floating.

- 5. Lower pin 2 to VILP.
- 6. Remove VILP/VHH from all registered output pins.
- 7. Lower \overline{OE} to V_{HP} to enable the output registers.
- 8. Verify V_{OL}/V_{OH} at all registered output pins. Note that because of the output inverter, a register that has been preloaded HIGH will provide a LOW at the output.

Parameter Symbol	Parameter Description	Min.	Rec.	Max.	Unit
V _{HH}	Super-level input voltage	10	11	12	v
VILP	Low-level input voltage	0	0	0.5	V
VIHP	High-level input voltage	2.4	5.0	5,5	V
Vссн	Power supply during preload	5.4	5.7	6.0	V
to	Delay time	100	200	1000	ns

28E

Output Register Preload Waveform

OUTPUT REGISTER PRELOAD Applies to -10 (-15 Mil) Series Only

The preload function allows the register to be loaded from the output pins. This feature aids functional testing of sequential designs by allowing direct setting of output states. The procedure for preloading follows.

- 1. Raise Vcc to 4.5 V.
- 2. Set \overline{OE} to V_{IHP} to disable output registers.
- 3. Apply either VIHP or VILP to all registered outputs. Use VIHP to preload a HIGH in the flip-flop; use VILP to

preload a LOW in the flip-flop. Leave combinatorial outputs floating.

- 4. Pulse pin 10 to V_{HH} , then back to 0 V.
- 5. Remove VILP/VIHP from all registered output pins.
- 6. Lower \overline{OE} to VILP to enable the output registers.
- Verify V_{OL}/V_{OH} at all registered output pins. Note that because of the output inverter, a register that has been preloaded HIGH will provide a LOW at the output.

Parameter Symbol	Parameter Description	Min.	Rec.	Max.	Unit
V _{HH}	Super-level input voltage	19	20	21	v
VILP	Low-level input voltage	. 0	0	0.5	v
VIHP	High-level input voltage	2.4	5.0	5.5	V
to	Delay time	100	200	1000	ns

Output Register Preload Waveform

T-46-19-13

ADV MICRO PLA/PLE/ARRAYS 28E D 🔤 0257526 0029487 1 🖬 AMD2

POWER-UP RESET

The power-up reset feature ensures that all flip-flops will be reset to LOW after the device has been powered up. The output state will be HIGH due to the inverting output buffer. This feature is valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the wide range of ways V_{CC} T-46-19-13

can rise to its steady state, two conditions are required to ensure a valid power-up reset. These conditions are:

1. The V_{CC} rise must be monotonic.

 Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback setup times are met.

Parameter Symbol	Parameter Description	Max.	Unit	
t _{PR}	Power-up Reset Time	1000	ns	
ts	Input or Feedback Setup Time	See Switchi	See Switching	
twL	Clock Width LOW	Characteristics		

12350-024A

Power-Up Reset Waveform