

Dual Low Bias Current Precision Operational Amplifier

OP297

FEATURES

Low Offset Voltage: 50 μV Max Low Offset Voltage Drift: 0.6 μV/°C Max Very Low Bias Current: 100 pA Max Very High Open-Loop Gain: 2000 V/mV Min Low Supply Current (Per Amplifier): 625 μA Max Operates From ±2 V to ±20 V Supplies High Common-Mode Rejection: 120 dB Min Pin Compatible to LT1013, AD706, AD708, OP221, LM158, and MC1458/1558 with Improved Performance

APPLICATIONS

Strain Gage and Bridge Amplifiers High Stability Thermocouple Amplifiers Instrumentation Amplifiers Photo-Current Monitors High Gain Linearity Amplifiers Long-Term Integrators/Filters Sample-and-Hold Amplifiers Peak Detectors Logarithmic Amplifiers Battery-Powered Systems

GENERAL DESCRIPTION

The OP297 is the first dual op amp to pack precision performance into the space-saving, industry-standard, 8-lead SOIC package. Its combination of precision with low power and extremely low input bias current makes the dual OP297 useful in a wide variety of applications.

Figure 1. Low Bias Current over Temperature

REV. E

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

PIN CONNECTIONS

Precision performance of the OP297 includes very low offset, under 50 μ V, and low drift, below 0.6 μ V/°C. Open-loop gain exceeds 2000 V/mV, ensuring high linearity in every application.

Errors due to common-mode signals are eliminated by the OP297's common-mode rejection of over 120 dB, which minimizes offset voltage changes experienced in battery-powered systems. Supply current of the OP297 is under 625 μ A per amplifier, and the part can operate with supply voltages as low as ± 2 V.

The OP297 uses a super-beta input stage with bias current cancellation to maintain picoamp bias currents at all temperatures. This is in contrast to FET input op amps whose bias currents start in the picoamp range at 25° C, but double for every 10° C rise in temperature, to reach the nanoamp range above 85° C. Input bias current of the OP297 is under 100 pA at 25° C and is under 450 pA over the military temperature range.

Combining precision, low power, and low bias current, the OP297 is ideal for a number of applications, including instrumentation amplifiers, log amplifiers, photodiode preamplifiers, and long-term integrators. For a single device, see the OP97; for a quad, see the OP497.

Figure 2. Very Low Offset

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 www.analog.com Fax: 781/326-8703 © 2003 Analog Devices, Inc. All rights reserved.

OP297–SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_s = \pm 15 V$, $T_A = 25^{\circ}C$, unless otherwise noted.)

				OP297E		()P297F	7	OP297G				
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit	
Input Offset Voltage	Vos			25	50		50	100		80	200	μV	
Long-Term Input													
Voltage Stability				0.1			0.1			0.1		μV/mo	
Input Offset Current	I _{OS}	$V_{CM} = 0 V$		20	100		35	150		50	200	pА	
Input Bias Current	IB	$V_{CM} = 0 V$		20	± 100		35	± 150		50	± 200	pА	
Input Noise Voltage	e _n p-p	0.1 Hz to 10 Hz		0.5			0.5			0.5		μV p-p	
Input Noise Voltage Density	en	$f_0 = 10 \text{ Hz}$		20			20			20		nV/\sqrt{Hz}	
		f _o = 1000 Hz		17			17			17		nV/\sqrt{Hz}	
Input Noise Current Density	i _n	$f_0 = 10 \text{ Hz}$		20			20			20		fA/\sqrt{Hz}	
Input Resistance													
Differential Mode	R _{IN}			30			30			30		MΩ	
Input Resistance													
Common-Mode	R _{INCM}			500			500			500		GΩ	
Large-Signal		$V_0 = \pm 10 V$											
Voltage Gain	A _{VO}	$R_L = 2 k\Omega$	2000	4000		1500	3200		1200	3200		V/mV	
Input Voltage Range*	V _{CM}		±13	± 14		±13	± 14		±13	± 14		V	
Common-Mode Rejection	CMRR	$V_{CM} = \pm 13 V$	120	140		114	135		114	135		dB	
Power Supply Rejection	PSRR	$V_{\rm S} = \pm 2 \text{ V}$ to $\pm 20 \text{ V}$	120	130		114	125		114	125		dB	
Output Voltage Swing	Vo	$R_L = 10 \ k\Omega$	±13	± 14		±13	± 14		±13	± 14		V	
		$R_L = 2 k\Omega$	±13	±13.7		±13	±13.7		±13	±13.7		V	
Supply Current per Amplifier	I _{SY}	No Load		525	625		525	625		525	625	μA	
Supply Voltage	Vs	Operating Range	±2		± 20	±2		± 20	±2		± 20	V	
Slew Rate	SR		0.05	0.15		0.05	0.15		0.05	0.15		V/µs	
Gain Bandwidth Product	GBWP	$A_{V} = +1$		500			500			500		kHz	
Channel Separation	CS	$V_0 = 20 V p-p$ $f_0 = 10 Hz$		150			150			150		dB	
Input Capacitance	C _{IN}			3			3			3		pF	

*Guaranteed by CMR test.

Specifications subject to change without notice.

$\label{eq:Electrical characteristics} \ensuremath{(@V_s=\pm15\ V,-40^\circ C \le T_A \le +85^\circ C\ for\ OP297E/F/G,\ unless\ otherwise\ noted.)}$

			()P297E		()P297F			OP297G	ŕ	
Parameter	Symbol	Conditions	Min	Тур	Max	Min	Тур	Max	Min	Тур	Max	Unit
Input Offset Voltage Average Input Offset	V _{os}			35	100		80	300		110	400	μV
Voltage Drift	TCVos			0.2	0.6		0.5	2.0		0.6	2.0	µV/°C
Input Offset Current	I _{OS}	$V_{CM} = 0 V$		50	450		80	750		80	750	pА
Input Bias Current	IB	$V_{CM} = 0 V$		50	± 450		80	± 750		80	± 750	pА
Large-Signal Voltage Gain	A _{VO}	$V_0 = \pm 10 V$,										
		$R_L = 2 k\Omega$	1200	3200		1000	2500		800	2500		V/mV
Input Voltage Range*	V _{CM}		±13	±13.5		±13	±13.5		±13	±13.5		V
Common-Mode Rejection	CMRR	$V_{CM} = \pm 13$	114	130		108	130		108	130		dB
Power Supply Rejection	PSRR	$V_{S} = \pm 2.5 V$										
		to ±20 V	114	0.15		108	0.15		108	0.3		dB
Output Voltage Swing	Vo	$R_L = 10 \ k\Omega$	±13	±13.4		±13	± 13.4		±13	± 13.4		V
Supply Current per Amplifier	I _{SY}	No Load		550	750		550	750		550	750	μA
Supply Voltage	Vs	Operating Range	±2.5		± 20	±2.5		± 20	±2.5		± 20	V

*Guaranteed by CMR test.

Specifications subject to change without notice.

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage ±20 V
Input Voltage ² ±20 V
Differential Input Voltage ² 40 V
Output Short-Circuit Duration Indefinite
Storage Temperature Range
Z Package $\dots \dots \dots$
P, S Packages
Operating Temperature Range
OP297E (Z)
OP297F, OP297G (P, S) –40°C to +85°C
Junction Temperature
Z Package
P, S Packages
Lead Temperature Range (Soldering, 60 sec) 300°C

Package Types	$\theta_{JA}{}^3$	θ _{JC}	Unit
8-Lead CERDIP (Z) 8-Lead PDIP (P)	134 96	12 37	°C/W °C/W
8-Lead SOIC (S)	150	41	°C/W

NOTES

¹ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

 2 For supply voltages less than ± 20 V, the absolute maximum input voltage is equal to the supply voltage.

 ${}^{3}\theta_{JA}$ is specified for worst case mounting conditions, i.e., θ_{JA} is specified for device in socket for CERDIP and PDIP, packages; θ_{JA} is specified for device soldered to printed circuit board for SOIC package.

Model	Temperature Range	Package Description	Package Options
OP297EZ	-40°C to +85°C	8-Lead CERDIP	Q-8
OP297FP	-40° C to $+85^{\circ}$ C	8-Lead PDIP	N-8
OP297FS	-40°C to +85°C	8-Lead SOIC	R-8
OP297FS-REEL	-40° C to $+85^{\circ}$ C	8-Lead SOIC	R-8
OP297FS-REEL7	-40°C to +85°C	8-Lead SOIC	R-8
OP297GP	-40°C to +85°C	8-Lead PDIP	N-8
OP297GS	-40° C to $+85^{\circ}$ C	8-Lead SOIC	R-8
OP297GS-REEL	-40°C to +85°C	8-Lead SOIC	R-8
OP297GS-REEL7	-40° C to $+85^{\circ}$ C	8-Lead SOIC	R-8

ORDERING GUIDE

CAUTION _

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the OP297 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Figure 3. Channel Separation Test Circuit

OP297–Typical Performance Characteristics

TPC 1. Typical Distribution of Input Offset Voltage

TPC 2. Typical Distribution of Input Bias Current

TPC 4. Input Bias, Offset Current vs. Temperature

TPC 7. Effective Offset Voltage vs. Source Resistance

TPC 5. Input Bias, Offset Current vs. Common-Mode Voltage

TPC 8. Effective TCV_{OS} vs. Source Resistance

TPC 3. Typical Distribution of Input Offset Current

TPC 6. Input Offset Voltage Warm-Up Drift

TPC 9. Short Circuit Current vs. Time, Temperature

TPC 16. Differential Input Voltage vs. Output Voltage

TPC 17. Output Swing vs. Load Resistance

TPC 12. Power Supply Rejection vs. Frequency

TPC 15. Open-Loop Gain vs. Load Resistance

TPC 18. Maximum Output Swing vs. Frequency

TPC 19. Open Loop Gain, Phase vs. Frequency

TPC 20. Small-Signal Overshoot vs. Load Capacitance

TPC 21. Open Loop Output Impedance vs Frequency

APPLICATIONS INFORMATION

Extremely low bias current over a wide temperature range makes the OP297 attractive for use in sample-and-hold amplifiers, peak detectors, and log amplifiers that must operate over a wide temperature range. Balancing input resistances is unnecessary with the OP297. Offset voltage and TCV_{OS} are degraded only minimally by high source resistance, even when unbalanced.

The input pins of the OP297 are protected against large differential voltage by back-to-back diodes and current-limiting resistors. Common-mode voltages at the inputs are not restricted and may vary over the full range of the supply voltages used.

The OP297 requires very little operating headroom about the supply rails and is specified for operation with supplies as low as 2 V. Typically, the common-mode range extends to within 1 V of either rail. The output typically swings to within 1 V of the rails when using a 10 k Ω load.

AC PERFORMANCE

The OP297's ac characteristics are highly stable over its full operating temperature range. Unity gain small-signal response is shown in Figure 4. Extremely tolerant of capacitive loading on the output, the OP297 displays excellent response with 1000 pF loads (Figure 5).

Figure 4. Small-Signal Transient Response $(C_{LOAD} = 100 \text{ pF}, A_{VCL} = 1)$

				٨						
100 90		••••	••••	ł.				••••	••••	••••
	- 					••••				
10	5									
0%					•••••		••••	}~~		
		20	mV					5µ	is	

Figure 5. Small-Signal Transient Response $(C_{LOAD} = 1000 \text{ pF}, A_{VCL} = 1)$

Figure 6. Large-Signal Transient Response $(A_{VCL} = 1)$

Figure 7. Guard Ring Layout and Connections

GUARDING AND SHIELDING

To maintain the extremely high input impedances of the OP297, care must be taken in circuit board layout and manufacturing. Board surfaces must be kept scrupulously clean and free of moisture. Conformal coating is recommended to provide a humidity barrier. Even a clean PC board can have 100 pA of leakage currents between adjacent traces, so guard rings should be used around the inputs. Guard traces are operated at a voltage close to that on the inputs, as shown in Figure 7, so that leakage currents become minimal. In noninverting applications, the guard ring should be connected to the common-mode voltage at the inverting input. In inverting applications, both inputs remain at ground, so the guard trace should be grounded. Guard traces should be on both sides of the circuit board.

OPEN-LOOP GAIN LINEARITY

The OP297 has both an extremely high gain of 2000 V/mV minimum and constant gain linearity. This enhances the precision of the OP297 and provides for very high accuracy in high closed loop gain applications. Figure 8 illustrates the typical open-loop gain linearity of the OP297 over the military temperature range.

Figure 8. Open-Loop Linearity of the OP297

APPLICATIONS

PRECISION ABSOLUTE VALUE AMPLIFIER

The circuit of Figure 9 is a precision absolute value amplifier with an input impedance of 30 M Ω . The high gain and low TCV_{OS} of the OP297 ensure accurate operation with microvolt input signals. In this circuit, the input always appears as a common-mode signal to the op amps. The CMR of the OP297 exceeds 120 dB, yielding an error of less than 2 ppm.

Figure 9. Precision Absolute Value Amplifier

PRECISION CURRENT PUMP

Maximum output current of the precision current pump shown in Figure 10 is \pm 10 mA. Voltage compliance is \pm 10 V with \pm 15 V supplies. Output impedance of the current transmitter exceeds 3 M Ω with linearity better than 16 bits.

Figure 10. Precision Current Pump

PRECISION POSITIVE PEAK DETECTOR

In Figure 11, the C_H must be of polystyrene, PTFE, or polyethylene to minimize dielectric absorption and leakage. The droop rate is determined by the size of C_H and the bias current of the OP297.

Figure 11. Precision Positive Peak Detector

SIMPLE BRIDGE CONDITIONING AMPLIFIER

Figure 12 shows a simple bridge conditioning amplifier using the OP297. The transfer function is

$$V_{OUT} = V_{REF} \left(\frac{\Delta R}{R + \Delta R}\right) \frac{R_F}{R}$$

The REF43 provides an accurate and stable reference voltage for the bridge. To maintain the highest circuit accuracy, $R_{\rm F}$ should be 0.1% or better with a low temperature coefficient.

Figure 12. A Simple Bridge Conditioning Amplifier Using the OP297

NONLINEAR CIRCUITS

Due to its low input bias currents, the OP297 is an ideal log amplifier in nonlinear circuits such as the square and squareroot circuits shown in Figures 13 and 14. Using the squaring circuit of Figure 13 as an example, the analysis begins by writing a voltage loop equation across transistors Q1, Q2, Q3, and Q4.

$$V_{T1}ln\left(\frac{I_{IN}}{I_{S1}}\right) + V_{T2}ln\left(\frac{I_{IN}}{I_{S2}}\right) = V_{T3}ln\left(\frac{I_O}{I_{S3}}\right) + V_{T4}ln\left(\frac{I_{REF}}{I_{S4}}\right)$$

All the transistors of the MAT04 are precisely matched and at the same temperature, so the I_S and V_T terms cancel, giving

$$2 \ln I_{IN} = \ln I_O + \ln I_{REF} = \ln (I_O \times I_{REF})$$

Exponentiating both sides of the equation leads to

$$I_O = \frac{\left(I_{IN}\right)^2}{I_{REF}}$$

Op amp A2 forms a current-to-voltage converter, which gives $V_{OUT} = R2 \times I_O$. Substituting ($V_{IN}/R1$) for I_{IN} and the above equation for I_O yields

$$V_{OUT} = \left(\frac{R2}{I_{REF}}\right) \left(\frac{V_{IN}}{R1}\right)^2$$

A similar analysis made for the square-root circuit of Figure 14 leads to its transfer function

$$V_{OUT} = R2\sqrt{\frac{(V_{IN})(I_{REF})}{R1}}$$

Figure 13. Squaring Amplifier

Figure 14. Square-Root Amplifier

In these circuits, I_{REF} is a function of the negative power supply. To maintain accuracy, the negative supply should be well regulated. For applications where very high accuracy is required, a voltage reference may be used to set I_{REF} . An important consideration for the squaring circuit is that a sufficiently large input voltage can force the output beyond the operating range of the output op amp. Resistor R4 can be changed to scale I_{REF} , or R1, and R2 can be varied to keep the output voltage within the usable range.

Unadjusted accuracy of the square-root circuit is better than 0.1% over an input voltage range of 100 mV to 10 V. For a similar input voltage range, the accuracy of the squaring circuit is better than 0.5%.

OP297 SPICE MACRO MODEL

Figures 14 and 15 show the node end net list for a SPICE macro model of the OP297. The model is a simplified version of the actual device and simulates important dc parameters such as V_{OS} , I_{OS} , I_B , A_{VO} , CMR, V_O , and I_{SY} . AC parameters such as slew rate, gain and phase response, and CMR change with frequency are also simulated by the model.

The model uses typical parameters for the OP297. The poles and zeros in the model were determined from the actual openand closed-loop gain and phase response of the OP297. In this way, the model presents an accurate ac representation of the actual device. The model assumes an ambient temperature of 25°C.

Figure 15. Macro Model

SPICE Net List

* * * NODE ASSIGNMENTS NONINVERTING INPUT NONINVERTING INPUT OUTPUT * * SUBCKT OP297 1 2 30 99 50 K* * * INPUT STAGE & POLE AT 6 MHz K* * * * * * * * * * * * * * * * * * *	117
NONINVERTING INPUT C5 17 98 88 4E-15 INVERTING INPUT G2 98 17 16 23 1 E-6 OUTPUT * * POSITIVE SUPPLY *COMMON-MODE GAIN NETWORK WITH ZERO AT 50 *SUBCKT OP297 1 2 30 99 50 R11 18 19 1E6 * C6 18 19 3.183E-9 R12 19 98 1	П2
INVERTING INPUT G2 98 17 16 23 1 E-6 OUTPUT * * * * POSITIVE SUPPLY * * * *SUBCKT OP297 1 2 30 99 50 % * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *	П2
OUTPUT * POSITIVE SUPPLY * NEGATIVE SUPPLY * *SUBCKT OP297 1 2 30 99 50 811 18 19 1E6 * C6 18 19 3.183E-9 812 19 98 1	Ц7
*SUBCKT OP297 1 2 30 99 50 *COMMON-MODE GAIN NETWORK WITH ZERO AT 50 *INPLIT STACE & POLE AT 6 MHz *R11 18 19 1E6 *INPLIT STACE & POLE AT 6 MHz *R12 19 98 1	Ц7
*SUBCKT OP297 1 2 30 99 50 * *INPLIT STACE & POLE AT 6 MHz *	112
* C6 18 19 3.183E-9 *INPLIT STACE & POLE AT 6 MHz R12 19 98 1	
*INDUT STACE & POLE AT 6 MHz R12 19 98 1	
*INPUT STAGE & POLE AT 6 MHz	
* E2 18 98 3 23 100E-3	
* RIN1 1 7 2500 *POLEAT (MIL-	
PIN2 2 P 2500 POLE AI 6 MHZ	
P2 7 3 5E11 R15 22 98 1E6	
$P_2 = 5 = 00 = 612$ $C_8 = 22 = 98 = 26.53E-15$	
B ₄ G ₃ 9 ₈ 22 1 /23 1 E -6	
C2 5 6 21 67E 12 "OUTPUT STAGE	
IOS 7 8 20E-12 R16 23 99 160E3	
EOS 0 7 BOLV(1) 10.22.25E 6 1 R1 / 23 50 160E3	
O1 5 8 10 OX 181 99 50 331E-6	
N2 6 9 11 OX R18 25 99 200	
R19 25 50 200	
P6 11 4 06 LI 25 30 IE-/	
D1 8 9 DY G4 28 50 22 25 5E-3	
D2 9 8 DY G5 29 50 25 22 5E-3	
* G6 25 99 99 22 5E-3	
EREF 98 0 23 0 1 G7 50 25 22 50 5E-3	
* V4 26 25 1.8	
*GAIN STAGE & DOMINANT POLE AT 0.13 HZ V5 25 27 1.3	
* D5 22 26 DX	
R7 12 98 2.45E9 D6 27 22 DX	
D/ 99 28 DX	
C1 08 12 56 1624E 2 D8 99 29 DX	
V2 99 13 15 D9 50 28 DY	
$V_2 = V_2 $	
D3 12 13 DX *MODELS USED D4 14 12 DX *	
*	
*NEGATIVE ZERO AT -1.8 MHz	
*	
K8 15 16 1E6	
C4 15 16 -88.4E-15	
R9 16 98 1	
E1 15 98 12 23 1E6 *	

OUTLINE DIMENSIONS

8-Lead Plastic Dual In-Line Package [PDIP] P-Suffix (N-8)

Dimensions shown in inches and (millimeters)

COMPLIANT TO JEDEC STANDARDS MO-095AA CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Dimensions shown in inches and (millimeters)

CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETERS DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

8-Lead Standard Small Outline Package (SOIC) Narrow Body S-Suffix

(**R-**8)

Dimensions shown in millimeters and (inches)

COMPLIANT TO JEDEC STANDARDS MS-012AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN

Revision History

Location Pag	<u></u> ge
7/03—Data Sheet changed from REV. D to REV. E.	
Changes to TPCS 13 and 16	4
Edits to Figures 12 and 14	
Changes to NONLINEAR CIRCUITS Section	8
10/02—Data Sheet changed from REV. C to REV. D.	
Edits to Figure 16	6
10/02—Data Sheet changed from REV. B to REV. C.	
Edits to SPECIFICATIONS	2
Deleted WAFER TEST LIMITS	
Deleted DICE CHARACTERISTICS	3
Deleted ABSOLUTE MAXIMUM RATINGS	4
Edits to ORDERING GUIDE	4
Updated OUTLINE DIMENSIONS 1	.2