

NTE5411 thru NTE5416 Silicon Controlled Rectifier (SCR) 4 Amp, Sensitive Gate, TO126

Description:

The NTE5411 through NTE5416 are PNPN silicon controlled rectifier (SCR) devices designed for high volume consumer applications such as temperature, light, and speed control: process and remote control, and warning systems where reliability of operation is important.

Features:

- Passivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics

<u>Absolute Maximum Ratings:</u> ($T_C = +110^{\circ}C$ unles otherwise specified)

Repetitive Peak Forward and Reverse Blocking Voltage, V _{DRM} , V _{RRM}
(1/2 Sine Wave, $R_{GK} = 1000\Omega$, $T_{C} = -40^{\circ}$ to +110°C, Note 1)
NTE5411
NTE5412
NTE5413
NTE5414
NTE5415
NTE5416
Non-Repetitive Peak Reverse Blocking Voltage , V _{RSM}
(1/2 Sine Wave, $R_{GK} = 1000\Omega$, $T_C = -40^{\circ}$ to +110°C)
NTE5411
NTE5412
NTE5413
NTE5414
NTE5415
NTE5416
Average On-State Current, I _{T(AV)}
$T_{\rm C} = -40^{\circ} \text{ to } +110^{\circ} \text{C}$ 2.6A
$T_{C}^{\circ} = +100^{\circ}C$
Surge $On-State$ Current (T _C = +90°C), I _{TSM}
1/2 Sine wave, 60Hz
1/2 Sine wave, 1.5ms
Circuit Fusing (t = 8.3 ms), l ² t
Peak Gate Power (Pulse Width = $10\mu s$, $T_C = +90^{\circ}C$), P_{GM} 0.5W

Note 1. Ratings apply for zero or negative gate voltage. Devices shall not have a positive bias applied to the gate concurrently with a negative potential on the anode. Devices should not be tested with a constant current source for forward or reverse blocking capability such that the voltage applied exceeds the rated blocking voltage.

<u>Absolute Maximum Ratings (Cont'd)</u>: $(T_C = +110^{\circ}C \text{ unles otherwise specified})$

Average Gate Power (t = 8.2ms, $T_C = +90^{\circ}C$), $P_{G(AV)}$ 0.1W	
Peak Forward Gate Current, I _{GM} 0.2A	
Peak Reverse Gate Voltage, V _{RGM} 6V	
Operating Junction Temperature Range, T _J	
Storage Temperature Range, T _{sta} 40° to +150°C	,
Thermal Resistance, Junction-to-Case, R _{thJC}	
Thermal Resistance, Junction-to-Ambient, R _{thJA}	
Mounting Torque (Note 2) 6 in. lb.	

Note 2. Torque rating applies with the use of a compression washer. Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Anode lead and heat-sink contact pad are common.

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Peak Forward or Reverse Blocking Current	I _{DRM} , I _{RRM}	Rated V_{DRM} or V_{RRM} , $T_{C} = +25^{\circ}C$	-	-	10	μΑ
		Rated V_{DRM} or V_{RRM} , $T_{C} = +110^{\circ}C$	_	-	200	μA
Peak Forward "ON" Voltage	V _{TM}	I _{TM} = 8.2A Peak, Note 3	_	_	2.2	V
Gate Trigger Current (Continuous DC, Note 4)	I _{GT}	V_{AK} = 12V, R_L = 24 Ω	_	_	200	μΑ
		V_{AK} = 12V, R_L = 24 Ω , T_C = -40°C	_	_	500	μA
Gate Trigger Voltage (Continuous DC)	V _{GT}	Source Voltage = 12V, $R_S = 50\Omega$, V _{AK} = 12V, $R_L = 24\Omega$, $T_C = -40^{\circ}C$	_	_	1	V
Gate Non-Trigger Voltage	V _{GD}	V _{AK} = Rated V _{DRM} , R _L = 100Ω, T _C = +110°C	0.2	_	_	V
Holding Current	Ι _Η	V_{AK} = 12V, I_{GT} = 2mA, T_{C} = +25°C	-	-	5	mA
		Initiating On–State Current = 200mA, $T_{C} = -40^{\circ}C$	-	-	10	mA
Total Turn-On Time	t _{gt}	Source Voltage = 12V, $R_S = 6k\Omega$, I _{TM} = 8.2A, I _{GT} = 2mA, Rated V _{DRM} , Rise Time = 20ns, Pulse Width = 10 μ s	-	2	-	μs
Forward Voltage Application Rate	dv/dt	V _D = Rated V _{DRM} , T _C = +110°C	_	10	-	V/µs

<u>Electrical Characteristics</u>: ($T_C = +25^{\circ}C$, $R_{GK} = 1000\Omega$ unles otherwise specified)

Note 3. Pulse Width = 1ms to 2ms, Duty Cycle = 2%.

Note 4. Measurement does not include R_{GK} current.

