NTE454 MOSFET, N-Ch, Dual Gate, TV UHF/RF Amp, Gate Protected ## **Description:** The NTE454 is a depletion mode dual gate MOSFET transistor designed for VHF amplifier and mixer applications. ## **Features:** - Low Reverse Transfer Capacitance $C_{rss} = 0.03pf$ (Max) - High Forward Transfer Admittance $|y_{fe}| = 0-20$ mmhos - Diode Protected Gates | Absolute Maximum Ratings: | 3 ()
Gate 1 | → 4
Source | |--|----------------|--------------------| | Drain Source Voltage, V _{DSX} | | | | Drain–Gate Voltage, V _{DG1} | | | | Gate Current, I_{G1} | | ±10mAdc
±10mAdc | | Drain Current-Continuous, I _D | | 60mAdc | | Total Power Dissipation ($T_A = +25^{\circ}C$), P_D | | | | Total Power Dissipation ($T_C = +25^{\circ}C$), P_D | | | | Storage Channel Temperature Range, T _{stg} | | . −65 to +200°C | | Junction Temperature Range, T _J | | . −65 to +175°C | | Lead Temperature, 1/16" from Seated Surface for 10 Seconds, T _L | | 300°C | ## **Electrical Characteristics:** $(T_A = 25^{\circ}C \text{ unless otherwise noted})$ | Characteristics | Symbol | Test Conditions | Min | Тур | Max | Unit | |--|-----------------------|---|-------|-------|--------------|--------| | OFF CHARACTERISTICS | • | | | | 1 | | | Drain-Source Breakdown
Voltage | V _{(BR)DSX} | $I_D = 10\mu Adc, V_5 = 0, V_{GIS} = V_{G25} = 5.0Vdc$ | 20 | _ | _ | Vdc | | Gate 1= Source Breakdown
Voltage (Note 1) | V _{(BR)G1SO} | $I_{G1} = \pm 10 \text{mAdc}, V_{GIS} = V_{DS} = 0$ | ±6.0 | ±12 | ±30 | Vdc | | Gate 2–Source Breakdown
Voltage (Note 1) | V _{(BR)G2SO} | $I_{G2} = \pm 10 \text{mAdc}, V_{G15} = V_{D5} = 0$ | ±5.0 | ±12 | ±30 | Vdc | | Gate 1 to Source Cutoff Voltage | V _{GIS(off)} | V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = 20 μ Adc | -0.5 | -1.5 | <i>–</i> 5.0 | Vdc | | Gate 2 to Source Cutoff Voltage | V _{G2S(off)} | $V_{DS} = 15Vdc, V_{G15} = 0,$
$I_{D} = 20\mu Adc$ | -0.2 | -1.4 | − 5.0 | Vdc | | Gate 1 Leakage Current | I _{G1SS} | $V_{GIS} = \pm 5.0 Vdc, V_{G2S} = V_{DS} = 0$ | _ | ±0.04 | ±10 | nAdc | | | | $V_{G2S} = -5.0 \text{Vdc}, V_{G2S} = V_{DS} = 0,$
$T_A = 150^{\circ}\text{C}$ | _ | - | -10 | μAdc | | Gate 2 Leakage Current | I _{G2SS} | $V_{G2S} = \pm 5.0 Vdc, V_{GIS} = V_{DS} = 0$ | _ | ±0.05 | ±10 | nAdc | | | | $V_{G2S} = -5.0 \text{Vdc}, V_{GIS} = V_{DS} = 0,$
$T_A = 150^{\circ}\text{C}$ | _ | - | -10 | μAdc | | ON CHARACTERISTICS | | | | | • | | | Zero-Gate Voltage Drain
Current (Note 2) | I _{DSS} | $V_{DS} = 15Vdc, V_{GIS} = 0, V_{G25} = 4.0Vdc$ | 6.0 | 13 | 30 | mAdc | | SMALL-SIGNAL CHARACTERI | STICS | | | | • | | | Forward Transfer Admittance (Note 3) | lУfel | $V_{DS} = 15 V dc, V_{G2S} = 4.0 V dc, V_{GIS} = 0, f = 1.0 k H_Z$ | 8.0 | 12.8 | 20 | mmhos | | Input Capacitance | C _{iss} | $V_{DS} = 15 V dc, V_{G2S} = 4.0 V dc, I_{D} = I_{DSS}, f = 1.0 M H_{Z}$ | _ | 3.3 | - | pF | | Output Capacitance | C _{oss} | V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc,
I_D = I_{DSS} , f = 1.0MH _Z | _ | 1.7 | - | pF | | Reverse Transfer Capacitance | C _{rss} | V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc,
I_D = 10mAdc, f = 1.0MH _Z | 0.005 | 0.014 | 0.03 | pF | | FUNCTIONAL CHARACTERIST | ICS | | | | | | | Noise Figure | NF | $V_{DD} = 18Vdc, V_{GG} = 7.0Vdc,$
f = 200MH _Z | _ | 1.8 | 4.5 | dB | | Common Source Power Gain | G _{ps} | $V_{DD} = 18Vdc, V_{GG} = 7.0Vdc,$
f = 200MH _Z | 15 | 20 | 25 | dB | | Bandwidth | BW | $V_{DD} = 18Vdc, V_{GG} = 7.0Vdc,$
f = 200MH _Z | 5.0 | - | 9.0 | MH_Z | | Gain Control Gate Supply
Voltage (Note 4) | V _{GG(GC)} | V_{DD} = 18Vdc, ΔG_{ps} = -30dB,
f = 200MH _Z | 0 | -1.0 | -3.0 | Vdc | Note 1. All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate–voltage limiting network is functioning properly. Note 2. Pulse Test: Pulse Width = 300µs, Duty Cycle ≤ 2.0% Note 3. This parameter must be measured with bias voltages supplied for less than 6 seconds to avoid overheating. Note 4. ΔG_{ps} is defined as the change in G_{pe} from the values at V_{GG} = 7.0V power gain conversion