

NTE454 MOSFET, N-Ch, Dual Gate, TV UHF/RF Amp, Gate Protected

Description:

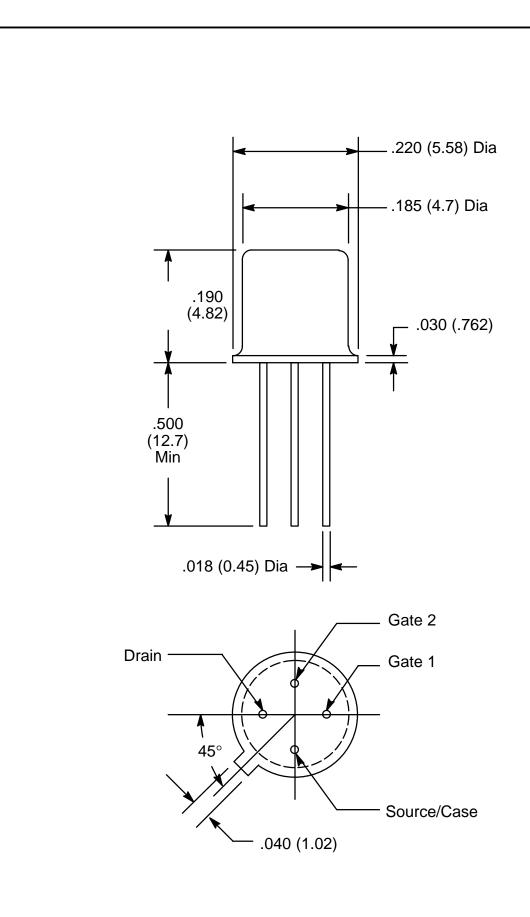
The NTE454 is a depletion mode dual gate MOSFET transistor designed for VHF amplifier and mixer applications.

Features:

- Low Reverse Transfer Capacitance $C_{rss} = 0.03pf$ (Max)
- High Forward Transfer Admittance $|y_{fe}| = 0-20$ mmhos
- Diode Protected Gates

Absolute Maximum Ratings:	3 () Gate 1	→ 4 Source
Drain Source Voltage, V _{DSX}		
Drain–Gate Voltage, V _{DG1}		
Gate Current, I_{G1}		±10mAdc ±10mAdc
Drain Current-Continuous, I _D		60mAdc
Total Power Dissipation ($T_A = +25^{\circ}C$), P_D		
Total Power Dissipation ($T_C = +25^{\circ}C$), P_D		
Storage Channel Temperature Range, T _{stg}		. −65 to +200°C
Junction Temperature Range, T _J		. −65 to +175°C
Lead Temperature, 1/16" from Seated Surface for 10 Seconds, T _L		300°C

Electrical Characteristics: $(T_A = 25^{\circ}C \text{ unless otherwise noted})$


Characteristics	Symbol	Test Conditions	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•				1	
Drain-Source Breakdown Voltage	V _{(BR)DSX}	$I_D = 10\mu Adc, V_5 = 0, V_{GIS} = V_{G25} = 5.0Vdc$	20	_	_	Vdc
Gate 1= Source Breakdown Voltage (Note 1)	V _{(BR)G1SO}	$I_{G1} = \pm 10 \text{mAdc}, V_{GIS} = V_{DS} = 0$	±6.0	±12	±30	Vdc
Gate 2–Source Breakdown Voltage (Note 1)	V _{(BR)G2SO}	$I_{G2} = \pm 10 \text{mAdc}, V_{G15} = V_{D5} = 0$	±5.0	±12	±30	Vdc
Gate 1 to Source Cutoff Voltage	V _{GIS(off)}	V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = 20 μ Adc	-0.5	-1.5	<i>–</i> 5.0	Vdc
Gate 2 to Source Cutoff Voltage	V _{G2S(off)}	$V_{DS} = 15Vdc, V_{G15} = 0,$ $I_{D} = 20\mu Adc$	-0.2	-1.4	− 5.0	Vdc
Gate 1 Leakage Current	I _{G1SS}	$V_{GIS} = \pm 5.0 Vdc, V_{G2S} = V_{DS} = 0$	_	±0.04	±10	nAdc
		$V_{G2S} = -5.0 \text{Vdc}, V_{G2S} = V_{DS} = 0,$ $T_A = 150^{\circ}\text{C}$	_	-	-10	μAdc
Gate 2 Leakage Current	I _{G2SS}	$V_{G2S} = \pm 5.0 Vdc, V_{GIS} = V_{DS} = 0$	_	±0.05	±10	nAdc
		$V_{G2S} = -5.0 \text{Vdc}, V_{GIS} = V_{DS} = 0,$ $T_A = 150^{\circ}\text{C}$	_	-	-10	μAdc
ON CHARACTERISTICS					•	
Zero-Gate Voltage Drain Current (Note 2)	I _{DSS}	$V_{DS} = 15Vdc, V_{GIS} = 0, V_{G25} = 4.0Vdc$	6.0	13	30	mAdc
SMALL-SIGNAL CHARACTERI	STICS				•	
Forward Transfer Admittance (Note 3)	lУfel	$V_{DS} = 15 V dc, V_{G2S} = 4.0 V dc, V_{GIS} = 0, f = 1.0 k H_Z$	8.0	12.8	20	mmhos
Input Capacitance	C _{iss}	$V_{DS} = 15 V dc, V_{G2S} = 4.0 V dc, I_{D} = I_{DSS}, f = 1.0 M H_{Z}$	_	3.3	-	pF
Output Capacitance	C _{oss}	V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = I_{DSS} , f = 1.0MH _Z	_	1.7	-	pF
Reverse Transfer Capacitance	C _{rss}	V_{DS} = 15Vdc, V_{G2S} = 4.0Vdc, I_D = 10mAdc, f = 1.0MH _Z	0.005	0.014	0.03	pF
FUNCTIONAL CHARACTERIST	ICS					
Noise Figure	NF	$V_{DD} = 18Vdc, V_{GG} = 7.0Vdc,$ f = 200MH _Z	_	1.8	4.5	dB
Common Source Power Gain	G _{ps}	$V_{DD} = 18Vdc, V_{GG} = 7.0Vdc,$ f = 200MH _Z	15	20	25	dB
Bandwidth	BW	$V_{DD} = 18Vdc, V_{GG} = 7.0Vdc,$ f = 200MH _Z	5.0	-	9.0	MH_Z
Gain Control Gate Supply Voltage (Note 4)	V _{GG(GC)}	V_{DD} = 18Vdc, ΔG_{ps} = -30dB, f = 200MH _Z	0	-1.0	-3.0	Vdc

Note 1. All gate breakdown voltages are measured while the device is conducting rated gate current. This ensures that the gate–voltage limiting network is functioning properly.

Note 2. Pulse Test: Pulse Width = 300µs, Duty Cycle ≤ 2.0%

Note 3. This parameter must be measured with bias voltages supplied for less than 6 seconds to avoid overheating.

Note 4. ΔG_{ps} is defined as the change in G_{pe} from the values at V_{GG} = 7.0V power gain conversion

