

NTE1919 Integrated Circuit Negative 3 Terminal Voltage Regulator, –15V, 1.5A

Description:

The NTE1919 is a 3 terminal fixed negative voltage regulator in a TO3 type package designed for use in applications requiring a well regulated positive output voltage. Outstanding features include full power usage up to 1.5A of load current, internal current limiting, thermal shutdown, and safe area protection on the chip, providing protection of the series pass Darlington, under most operating conditions. Hermetically sealed steel packages are utilized for high reliability and low thermal resistance. A low-noise temperature stable band–gap reference is the key design factor insuring excellent temperature regulation of the NTE1919. This coupled to a very low output impedance insures superior load regulation.

Features:

- Guaranteed Input–Output Differential: V_{IN} V_O = –2.1V
- Low Noise, Band Gap Reference
- Remote Sense Capability
- Sample Power Cycled Burn-In
- Guaranteed Thermal Resistance Junction-to-Case: R_{thJC} = 3°C/W

Absolute Maximum Ratings:

Input Voltage (Note 1), V _{IN}	40V
Power Dissipation, P_D Derate Above $T_C = 105^{\circ}C$	
Operating Junction Temperature Range, T _J	–55° to +150°C
Storage Temperature Range, T _{stg}	–65° to +150°C
Lead Temperature (During Soldering, 60sec Max), T _L	+300°C
Thermal Resistance, Junction–to–Case, R _{thJC}	3°C/W

Note 1. Short circuit protection is only assured to V_{IN}max. In case of short circuit, with input–output voltages approaching V_{IN}max, regulator may require the removal of the input voltage to restart.

Electrical Characteristics:	$T_{\rm J}$ = +25°C unless otherwise specified)
------------------------------------	---

Parameter	Symbol	Test Conditions	Min	Тур	Мах	Unit
Output Voltage	Vo	$V_{IN} = -20V$ to $-25V$, $I_O = 10mA$ to 1A, Note 2	14.05	15.0	16.05	V
Input–Output Differential	V _{IN} -V _O	$I_{O} = 1A, T_{J} = 0 \text{ to } +125^{\circ}\text{C}$	-2.1	-	-	V
Line Regulation	Reg _{Line}	$V_{IN} = -20V$ to $-25V$, $I_O = 1A$, Note 2	-	—	2.0	% V _O
Load Regulation	Reg _{Load}	$V_{IN} = -20V$, $I_O = 10$ mA to 1.5A, Note 2	-	-	0.6	% V _O
Quiescent Current	ا _Q	$V_{IN} = -20V, I_{O} = 10mA$	-	-	10	mA
Quiescent Current Line	I _{Q(Line)}	$V_{IN} = -20V$ to $-30V$, $I_O = 10mA$	-	-	1.3	mA
Quiescent Current Load	I _{Q(Load)}	$V_{IN} = -20V$, $I_{O} = 10$ mA to 1.5A	-	—	0.75	mA
Current Limit	I _{LIM}	$V_{IN} = -20V$, Note 2	_	—	3.5	A
Temperature Coefficient	Т _С	$V_{IN} = -20V$, $I_O = 100$ mA, $T_J = 0$ to $+125^{\circ}$ C	_	—	0.03	% V _O /°C
Output Noise Voltage	V _N	$V_{IN} = -20V$, $I_O = 100$ mA. $T_J = 0$ to +125°C, Note 3	-	-	10	μV _{rms} /V
Ripple Attenuation	R _A	$V_{IN} = -20V$, $I_O = 1A$, $T_J = 0$ to +125°C, Note 4	54	_	-	dB

Note 2. Low duty cycle pulse testing with Kelvin connections required. Die temperature changes must be accounted for separatly.

- Note 3. BW = 10Hz to 100kHz.
- Note 4. Ripple attenuation is specified for a 1Vrms, 120Hz, input ripple. Ripple attenuation is minimum of 60dB at 5V output and is 1dB less for each volt increase in the output voltage.

