September 2009 # MOC3031M, MOC3032M, MOC3033M, MOC3041M, MOC3042M, MOC3043M 6-Pin DIP Zero-Cross Optoisolators Triac Driver Output (250/400 Volt Peak) ## **Features** - Simplifies logic control of 115 VAC power - Zero voltage crossing - dv/dt of 2000 V/µs typical, 1000 V/µs guaranteed - VDE recognized (File # 94766), ordering option V (e.g., MOC3043VM) ## **Applications** - Solenoid/valve controls - Lighting controls - Static power switches - AC motor drives - Temperature controls - E.M. contactors - AC motor starters - Solid state relays ## **Description** The MOC303XM and MOC304XM devices consist of a AlGaAs infrared emitting diode optically coupled to a monolithic silicon detector performing the function of a zero voltage crossing bilateral triac driver. They are designed for use with a triac in the interface of logic systems to equipment powered from 115 VAC lines, such as teletypewriters, CRTs, solid-state relays, industrial controls, printers, motors, solenoids and consumer appliances, etc. ## **Schematic** # Package Outlines ## **Absolute Maximum Ratings** (T_A = 25°C unless otherwise noted) Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only. | Symbol | Parameters Device | | Value | Units | |------------------|--|----------------|-------------------|---------| | TOTAL DEV | /ICE | | | | | T _{STG} | Storage Temperature | All | -40 to +150 | °C | | T _{OPR} | Operating Temperature | All | -40 to +85 | °C | | T _{SOL} | Lead Solder Temperature | All | 260 for 10
sec | °C | | TJ | Junction Temperature Range | All | -40 to +100 | °C | | V _{ISO} | Isolation Surge Voltage ⁽¹⁾ (peak AC voltage, 60Hz, 1 sec. duration, $I_{I-O} \le 2\mu A$) | All | 7500 | Vac(pk) | | P _D | Total Device Power Dissipation @ 25°C | All | 250 | mW | | | Derate above 25°C | | 2.94 | mW/°C | | EMITTER | | | | | | I _F | Continuous Forward Current | All | 60 | mA | | V_{R} | Reverse Voltage | All | 6 | V | | P _D | Total Power Dissipation 25°C Ambient | All | 120 | mW | | | Derate above 25°C | | 1.41 | mW/°C | | DETECTOR | 3 | | | | | V_{DRM} | Off-State Output Terminal Voltage | MOC3031M/2M/3M | 250 | V | | | | MOC3041M/2M/3M | 400 | | | I _{TSM} | Peak Repetitive Surge Current (PW = 100µs, 120 pps) | All | 1 | Α | | P _D | Total Power Dissipation @ 25°C Ambient | All | 150 | mW | | | Derate above 25°C | All | 1.76 | mW/°C | #### Note 1. Isolation surge voltage, V_{ISO}, is an internal device dielectric breakdown rating. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common. # **Electrical Characteristics** (T_A = 25°C Unless otherwise specified) ## **Individual Component Characteristics** | Symbol | Parameters | Test Conditions | Device | Min. | Тур. | Max. | Units | |-------------------|--|--|--------|------|------|------|-------| | EMITTER | • | | | , | , | • | | | V _F | Input Forward Voltage | I _F = 30mA | All | | 1.25 | 1.5 | V | | I _R | Reverse Leakage Current | V _R = 6V | All | | 0.01 | 100 | μΑ | | DETECTOR | DETECTOR | | | | | | | | I _{DRM1} | Peak Blocking Current,
Either Direction | Rated V_{DRM} , $I_F = 0^{(2)}$ | All | | | 100 | nA | | V _{TM} | Peak On-State Voltage,
Either Direction | $I_{TM} = 100$ mA peak, $I_F = 0$ | All | | 1.8 | 3 | V | | dv/dt | Critical Rate of Rise of Off-State Voltage | I _F = 0 (Figure 9) ⁽⁴⁾ | All | 1000 | | | V/µs | ## **Transfer Characteristics** | Symbol | DC Characteristics | Test Conditions | Device | Min. | Тур. | Max. | Units | |-----------------|--------------------------------------|--|-----------------------|------|------|------|-------| | I _{FT} | LED Trigger Current | Main Terminal
Voltage = 3V ⁽³⁾ | MOC3031M/
MOC3041M | | | 15 | mA | | | | | MOC3032M/
MOC3042M | | | 10 | | | | | | MOC3033M/
MOC3043M | | | 5 | | | I _H | Holding Current,
Either Direction | | All | | 400 | | μΑ | ## **Zero Crossing Characteristics** | Symbol | Characteristics | Test Conditions | Device | Min. | Тур. | Max. | Units | |-------------------|-------------------------------|---|--------|------|------|------|-------| | V _{IH} | Inhibit Voltage | I _F = rated I _{FT} , MT1-MT2
voltage above which device
will not trigger
off-state | All | | | 20 | V | | I _{DRM2} | Leakage in Inhibited
State | I_F = rated I_F , rated V_{DRM} , off-state | All | | | 500 | μΑ | #### Notes: - 2. Test voltage must be applied within dv/dt rating. - 3. All devices are guaranteed to trigger at an I_F value less than or equal to max I_{FT} . Therefore, recommended operating I_F lies between max I_{FT} (15mA for MOC3031M & MOC3041M, 10mA for MOC3032M & MOC3042M, 5mA for MOC3033M & MOC3043M) and absolute max I_F (60mA). - 4. This is static dv/dt. See Figure 9 for test circuit. Commutating dv/dt is a function of the load-driving thyristor(s) only. # **Safety and Insulation Ratings** As per IEC 60747-5-2, this optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits. | Symbol | Parameter | Min. | Тур. | Max. | Unit | |-------------------|---|-----------------|-----------|------|-------------------| | | Installation Classifications per DIN VDE 0110/1.89 Table 1 | | | | | | | For Rated Main Voltage < 150Vrms | | I-IV | | | | | For Rated Main voltage < 300Vrms | | I-IV | | | | | Climatic Classification | | 55/100/21 | | | | | Pollution Degree (DIN VDE 0110/1.89) | | 2 | | | | CTI | Comparative Tracking Index | 175 | | | | | V _{PR} | Input to Output Test Voltage, Method b, V _{IORM} x 1.875 = V _{PR} , 100% Production Test with tm = 1 sec, Partial Discharge < 5pC | 1594 | | | V _{peak} | | | Input to Output Test Voltage, Method a, V _{IORM} x 1.5 = V _{PR} , Type and Sample Test with tm = 60 sec, Partial Discharge < 5pC | 1275 | | | V _{peak} | | V _{IORM} | Max. Working Insulation Voltage | 850 | | | V _{peak} | | V _{IOTM} | Highest Allowable Over Voltage | 6000 | | | V _{peak} | | | External Creepage | 7 | | | mm | | | External Clearance | 7 | | | mm | | | Insulation Thickness | 0.5 | | | mm | | RIO | Insulation Resistance at Ts, V _{IO} = 500V | 10 ⁹ | | | Ω | # **Typical Performance Curves** Figure 1. LED Forward Voltage vs. Forward Current Figure 2. On-State Characteristics Figure 3. Trigger Current vs. Temperature Figure 4. Leakage Current, I_{DRM} vs. Temperature # Typical Performance Curves (Continued) Figure 5. I_{DRM2} - Leakage in Inhibit State vs. Temperature 1.8 1.6 1.4 1.2 1.2 1.0 1.0 0.8 0.6 20 40 80 100 -40 -20 Figure 6. LED Current Required to Trigger vs. LED Pulse Width Figure 7. Holding Current, I_H vs. Temperature TA, AMBIENT TEMPERATURE (°C) Figure 8. Inhibit Voltage vs. Temperature Figure 9. Static dv/dt Test Circuit - 1. The mercury wetted relay provides a high speed repeated pulse to the D.U.T. - 100x scope probes are used, to allow high speeds and voltages. - 3. The worst-case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable R_{TEST} allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. τ_{RC} is measured at this point and recorded. Figure 10. Static dv/dt Test Waveform (MOC3031M, MOC3032M, MOC3033M) Figure 11. Static dv/dt Test Waveform (MOC3041M, MOC3042M, MOC3043M) Typical circuit (Fig 12, 13) for use when hot line switching is required. In this circuit the "hot" side of the line is switched and the load connected to the cold or neutral side. The load may be connected to either the neutral or hot line. R_{in} is calculated so that I_F is equal to the rated I_{FT} of the part, 5mA for the MOC3033M and MOC3043M, 10mA for the MOC3032M and MOC3042M, or 15mA for the MOC3031M and MOC3041M. The 39 ohm resistor and 0.01 μ F capacitor are for snubbing of the triac and may or may not be necessary depending upon the particular triac and load used. Figure 12. Hot-Line Switching Application Circuit (MOC3031M, MOC3032M, MOC3033M) Figure 13. Hot-Line Switching Application Circuit (MOC3041M, MOC3042M, MOC3043M) Figure 14. Inverse-Parallel SCR Driver Circuit (MOC3031M, MOC3032M, MOC3033M) Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional $1k\Omega$. Figure 15. Inverse-Parallel SCR Driver Circuit (MOC3041M, MOC3042M, MOC3043M) Suggested method of firing two, back-to-back SCR's with a Fairchild triac driver. Diodes can be 1N4001; resistors, R1 and R2, are optional 330Ω . #### Note: This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only. # **Package Dimensions** ## **Through Hole** ## 0.4" Lead Spacing #### **Surface Mount** **Note:** All dimensions in mm. # **Ordering Information** | Option | Order Entry Identifier (Example) | Description | | |-----------|---|------------------------------|--| | No option | tion MOC3031M Standard Through Hole Device | | | | S | MOC3031SM | Surface Mount Lead Bend | | | SR2 | MOC3031SR2M | Surface Mount; Tape and Reel | | | Т | MOC3031TM | 0.4" Lead Spacing | | | V | MOC3031VM | VDE 0884 | | | TV | MOC3031TVM | VDE 0884, 0.4" Lead Spacing | | | SV | MOC3031SVM | VDE 0884, Surface Mount | | | SR2V | MOC3031SR2VM VDE 0884, Surface Mount, Tape and Reel | | | # **Marking Information** | Definitions | | | | | | |-------------|--|--|--|--|--| | 1 | Fairchild logo | | | | | | 2 | Device number | | | | | | 3 | VDE mark (Note: Only appears on parts ordered with VDE option – See order entry table) | | | | | | 4 | One digit year code, e.g., '3' | | | | | | 5 | Two digit work week ranging from '01' to '53' | | | | | | 6 | Assembly package code | | | | | ^{*}Note – Parts that do not have the 'V' option (see definition 3 above) that are marked with date code '325' or earlier are marked in portrait format. # **Carrier Tape Specification** User Direction of Feed ---- ## **Reflow Profile** #### TRADEMARKS The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. Auto-SPM™ F-PFS™ FRFET® Build it Now™ CorePLUS™ Global Power Resource SM CorePOWER™ Green FPS™ Green FPS™ e-Series™ CROSSVOLT™ Gmax™ Current Transfer Logic™ GTO™ EcoSPARK® IntelliMAX™ EfficentMax™ ISOPLANAR™ EZSWITCH™* MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MillerDrive™ Fairchild[®] MotionMax™ Fairchild Semiconductor® Motion-SPM™ FACT Quiet Series™ OPTOLOGIC® **OPTOPLANAR®** FACT[®] FAST[®] FastvCore™ FETBench™ PDP SPM™ FlashWriter® Power-SPM™ FPS™ PowerTrench® PowerXS™ Programmable Active Droop™ OFFT QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SmartMax™ SMART START™ SPM® STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™ SYSTEM ®* The Power Franchise® bwer TinyBoost™ TinyBuck™ TinyLogic[®] TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TriFault Detect™ TRUECURRENT™* μSerDes™ UHC Ultra FRFET™ UniFFT™ **VCXTM** VisualMax™ XS™ #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. - 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### **ANTI-COUNTERFEITING POLICY** Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS #### Definition of Terms | Datasheet Identification | Product Status | Definition | | | | | |--------------------------|-----------------------|---|--|--|--|--| | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | | | | | Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | | | | | No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | | | | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | | | | | Rev. 140 ^{*} Trademarks of System General Corporation, used under license by Fairchild Semiconductor.