Switch-mode NPN Bipolar Power Transistor For Switching Power Supply Applications

The MJE/MJF18004 have an applications specific state-of-the-art die designed for use in 220 V line-operated switch-mode Power supplies and electronic light ballasts.

Features

- Improved Efficiency Due to Low Base Drive Requirements:
 - High and Flat DC Current Gain h_{FE}
 - Fast Switching
 - No Coil Required in Base Circuit for Turn–Off (No Current Tail)
- Full Characterization at 125°C
- ON Semiconductor Six Sigma Philosophy Provides Tight and Reproducible Parametric Distributions
- Two Package Choices: Standard TO-220 or Isolated TO-220
- MJF18004, Case 221D, is UL Recognized at 3500 V_{RMS}: File #E69369
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	V _{CEO}	450	Vdc
Collector-Base Breakdown Voltage	V _{CES}	1000	Vdc
Emitter-Base Voltage	V _{EBO}	9.0	Vdc
Collector Current – Continuous	Ι _C	5.0	Adc
Collector Current – Peak (Note 1)	I _{CM}	10	Adc
Base Current – Continuous	Ι _Β	2.0	Adc
Base Current – Peak (Note 1)	I _{BM}	4.0	Adc
RMS Isolation Voltage (Note 2) Test No. 1 Per Figure 22a Test No. 2 Per Figure 22b Test No. 3 Per Figure 22c (for 1 sec, R.H. < 30%, T _A = 25°C)	V _{ISOL}	MJF18004 4500 3500 1500	V
Total Device Dissipation @ T _C = 25°C MJE18004 MJF18004 Derate above 25°C MJE18004 MJF18004 MJF18004	P _D	75 35 0.6 0.28	W/°C
Operating and Storage Temperature	T _J , T _{stg}	-65 to 150	°C

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case MJE18004 MJF18004	$R_{ extsf{ heta}JC}$	1.65 3.55	°C/W
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	ΤL	260	°C

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

1. Pulse Test: Pulse Width = 5 ms, Duty Cycle \leq 10%.

2. Proper strike and creepage distance must be provided.

ON Semiconductor®

www.onsemi.com

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise specified)

Characteristic					Min	Тур	Max	Unit
OFF CHARACTERISTICS								
Collector–Emitter Sustaining Vo	V _{CEO(sus)}	450	-	-	Vdc			
Collector Cutoff Current (V _{CE} =	Rated V_{CEO} , $I_B = 0$))		I _{CEO}	-	-	100	μAdc
Collector Cutoff Current (V_{CE} = $(V_{CE}$ =	I _{CES}	- - -	- - -	100 500 100	μAdc			
Emitter Cutoff Current (V _{EB} = 9.	.0 Vdc, I _C = 0)			I _{EBO}	-	-	100	μAdc
ON CHARACTERISTICS					1	L		1
Base–Emitter Saturation Voltag	e (I _C = 1.0 Adc, I _B = (I _C = 2.0 Adc, I _B =			V _{BE(sat)}		0.82 0.92	1.1 1.25	Vdc
				V _{CE(sat)}	- - - -	0.25 0.29 0.3 0.36 0.5	0.5 0.6 0.45 0.8 0.75	Vdc
$ \begin{array}{llllllllllllllllllllllllllllllllllll$				h _{FE}	12 - 14 - 6.0 - 10	21 20 - 32 11 7.5 22	- 34 - - -	_
DYNAMIC CHARACTERISTICS							-	-
Current Gain Bandwidth ($I_C = 0$.5 Adc, V _{CE} = 10 V	dc, f = 1.0	MHz)	f _T	-	13	-	MHz
Output Capacitance ($V_{CB} = 10$)	Vdc, I _E = 0, f = 1.0	MHz)		C _{ob}	-	50	65	pF
Input Capacitance ($V_{EB} = 8.0 V$)			C _{ib}	-	800	1000	pF
Determined 1.0 μ s and I_E	$(I_{C} = 1.0 \text{ Adc})$	1.0 μs	(T _C = 125°C)	V _{CE(dsat)} – – –		6.8 14	-	Vdc
	I _{B1} = 100 mAdc V _{CC} = 300 V)	3.0 μs	(T _C = 125°C)			2.4 5.6		
final I _{B1} (see Figure 18)	$(I_{\rm C} = 2.0 {\rm Adc})$	1.0 μs	(T _C = 125°C)		-	11.3 15.5		
	I _{B1} = 400 mAdc V _{CC} = 300 V)	3.0 μs	(T _C = 125°C)		-	1.3 6.1	_ _	

	Characteristic	Symbol	Min	Тур	Max	Unit	
WITCHING CHARACT	ERISTICS: Resistive Load (D.C. <	10%, Pulse Width	n = 20 μs)				
Turn–On Time	$(I_{C} = 1.0 \text{ Adc}, I_{B1} = 0.1 \text{ Adc}, I_{B2} = 0.5 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{on}		210 180	300 -	ns
Turn–Off Time		(T _C = 125°C)	t _{off}		1.0 1.3	1.7 -	μs
Turn–On Time	$(I_{C} = 2.0 \text{ Adc}, I_{B1} = 0.4 \text{ Adc}, I_{B1} = 1.0 \text{ Adc}, V_{CC} = 300 \text{ V})$	(T _C = 125°C)	t _{on}	-	75 90	110 -	ns
Turn–Off Time	_	(T _C = 125°C)	t _{off}	-	1.5 1.8	2.5 -	μs
Turn–On Time	$(I_{C} = 2.5 \text{ Adc}, I_{B1} = 0.5 \text{ Adc}, I_{B2} = 0.5 \text{ Adc}, V_{CC} = 250 \text{ V})$	(T _C = 125°C)	t _{on}	- -	450 900	800 1400	ns
Storage Time		(T _C = 125°C)	t _s	- -	2.0 2.2	3.0 3.5	μs
Fall Time	_	(T _C = 125°C)	t _f	- -	275 500	400 800	ns
WITCHING CHARACT	ERISTICS: Inductive Load (V _{clamp}	= 300 V, V _{CC} = 15	V, L = 200 μH)				
Fall Time	$(I_{C} = 1.0 \text{ Adc}, I_{B1} = 0.1 \text{ Adc}, I_{B2} = 0.5 \text{ Adc})$	(T _C = 125°C)	t _{fi}	-	100 100	150 -	ns
Storage Time		(T _C = 125°C)	t _{si}	- -	1.1 1.4	1.7 -	μs
Crossover Time		(T _C = 125°C)	t _c	- -	180 160	250 -	ns
Fall Time	$(I_{C} = 2.0 \text{ Adc}, I_{B1} = 0.4 \text{ Adc}, I_{B2} = 1.0 \text{ Adc})$	(T _C = 125°C)	t _{fi}	- -	90 150	175 -	ns
Storage Time		(T _C = 125°C)	t _{si}	-	1.7 2.2	2.5 -	μs
Crossover Time		(T _C = 125°C)	t _c	- -	180 250	300 -	ns

 $(T_C = 125^{\circ}C)$

 $(T_C = 125^{\circ}C)$

 $(T_C = 125^{\circ}C)$

70

100

0.75

1.0

250

250

_

_

_

_

_

_

t_{fi}

t_{si}

t_c

130

175

1.0

1.3

350

500

ns

μs

ns

ELECTRICAL CHARACTERISTICS — continued ($T_c = 25^{\circ}C$ unless otherwise specified)

 $\begin{aligned} (I_C = 2.5 \text{ Adc}, \ I_{B1} = 0.5 \text{ Adc}, \\ I_{B2} = 0.5 \text{ Adc}, \\ V_{BE(off)} = -5.0 \text{ Vdc}) \end{aligned}$

Fall Time

Storage Time

Crossover Time

TYPICAL STATIC CHARACTERISTICS

Figure 9. Inductive Storage Time, tsi

Figure 10. Inductive Storage Time, t_{si}(h_{FE})

Figure 12. Inductive Switching, t_c and t_{fi} , I_C/I_B = 10

Figure 15. Forward Bias Safe Operating Area

Figure 17. Forward Bias Power Derating

Figure 16. Reverse Bias Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate I_C-V_{CE} limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on $T_C = 25^{\circ}C$; $T_J(pk)$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C \ge 25^{\circ}C$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. TJ(pk) may be calculated from the data in Figures 20 and 21. At any case temperatures, thermal limitations will reduce the power that can be handled to values less the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base-to-emitter junction reverse biased. The safe level is specified as a reverse-biased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

Figure 19. Inductive Switching Measurements

Table 1. Inductive Load Switching Drive Circuit

TYPICAL THERMAL RESPONSE

Figure 21. Typical Thermal Response for MJF18004

ORDERING INFORMATION

Device	Package	Shipping
MJE18004G	TO-220AB (Pb-Free)	50 Units / Rail
MJF18004G	TO-220 (Fullpack) (Pb-Free)	50 Units / Rail

TEST CONDITIONS FOR ISOLATION TESTS*

Figure 23. Typical Mounting Techniques for Isolated Package

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to 8 in \cdot lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4–40 screw, without washers, and applying a torque in excess of 20 in · lbs will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4–40 screws indicate that the screw slot fails between 15 to 20 in \cdot lbs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding 10 in \cdot lbs of mounting torque under any mounting conditions.

** For more information about mounting power semiconductors see Application Note AN1040.

DATE 05 NOV 2019

TO-220 CASE 221A-09 ISSUE AJ

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 2009.

2. CONTROLLING DIMENSION: INCHES

3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED.

4. MAX WIDTH FOR F102 DEVICE = 1.35MM

	INC	INCHES		ETERS
DIM	MIN.	MAX.	MIN.	MAX.
А	0.570	0.620	14.48	15.75
В	0.380	0.415	9.66	10.53
С	0.160	0.190	4.07	4.83
D	0.025	0.038	0.64	0.96
F	0.142	0.161	3.60	4.09
G	0.095	0.105	2.42	2.66
Н	0.110	0.161	2.80	4.10
J	0.014	0.024	0.36	0.61
К	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
Ν	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.41
Т	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04

STYLE 1: PIN 1. 2. 3. 4.	BASE COLLECTOR EMITTER COLLECTOR	STYLE 2: PIN 1. 2. 3. 4.	BASE EMITTER COLLECTOR EMITTER	STYLE 3: PIN 1. 2. 3. 4.	CATHODE ANODE GATE ANODE	STYLE 4: PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE MAIN TERMINAL 2
STYLE 5: PIN 1. 2. 3. 4.	DRAIN SOURCE		CATHODE ANODE	3.	CATHODE ANODE CATHODE ANODE	STYLE 8: PIN 1. 2. 3. 4.	ANODE EXTERNAL TRIP/DELAY
STYLE 9: PIN 1. 2. 3. 4.	COLLECTOR EMITTER	STYLE 10: PIN 1. 2. 3. 4.	GATE SOURCE DRAIN	STYLE 11: PIN 1. 2. 3. 4.		STYLE 12 PIN 1. 2. 3. 4.	MAIN TERMINAL 1 MAIN TERMINAL 2 GATE NOT CONNECTED

DOCUMENT NUMBER:	98ASB42148B	Electronic versions are uncontrolled except when accessed directly from the Document Repositor, Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.			
DESCRIPTION:	TO-220		PAGE 1 OF 1		
ON Semiconductor and ()) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the					

 DOCUMENT NUMBER:
 98ASB42514B
 Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.

 DESCRIPTION:
 TO-220 FULLPAK
 PAGE 1 OF 1

 ON Semiconductor and ON Semiconductor components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding

ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor date sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use a a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor houteds for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

Email Requests to: orderlit@onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative