

# LPC-P2129

# Get Started Guide

Revision 1.0 28/03/2005



#### Introduction

The **LPC2129** are based on a 16/32 bit ARM7TDMI-S CPU with real-time emulation and embedded trace support, together with 128/256 kilobytes (kB) of embedded high speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at maximum clock rate. For critical code size applications, the alternative 16-bit Thumb Mode reduces code by more than 30% with minimal performance penalty.

With their compact 64 pin package, low power consumption, various 32-bit timers, 4-channel 10-bit ADC, 2 advanced CAN channels, PWM channels and 46 GPIO lines with up to 9 external interrupt pins these microcontrollers are particularly suitable for automotive and industrial control applications as well as medical systems and fault-tolerant maintenance buses. With a wide range of additional serial communications interfaces, they are also suited for communication gateways and protocol converters as well as many other general-purpose applications.

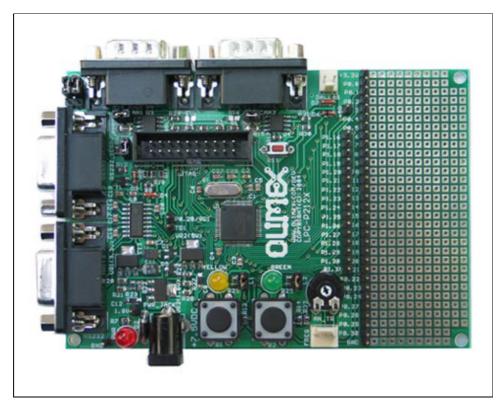
The LPC-P2129 Development board is designed to evaluate LPC2129 processor. It has the following features:

- standard JTAG connector with ARM 2x10 pin layout for programming/debugging with ARM-JTAG
- three on board voltage regulators 1.8V, 3.3V and 5V with up to 800mA current
- single power supply: +7-9VDC required
- power supply status LED
- power supply filtering capacitor
- two channel RS232 interface with two RS232 SUB-D 9 pin connectors
- two channel CAN interface with drivers and two SUB-D 9 pin connectors
- iButton interface circuit
- Frequency input connector
- two buttons
- two status LEDs
- Potentiometer connected to AIN
- RESET circuit with external control of Philips ISP utility via RS232
- RESET button
- DBG jumper for JTAG enable
- BSL jumper for bootloader enable
- JRST jumper for enable/disable external RESET control by RS232
- HF crystal
- extension headers for all uC ports
- PCB: FR-4, 1.5 mm (0,062"), green soldermask, white silkscreen component print
- Dimensions: 115x80 mm (4.5x3.2")

The purpose of this guide is to describe LPC-P2138 Development board.

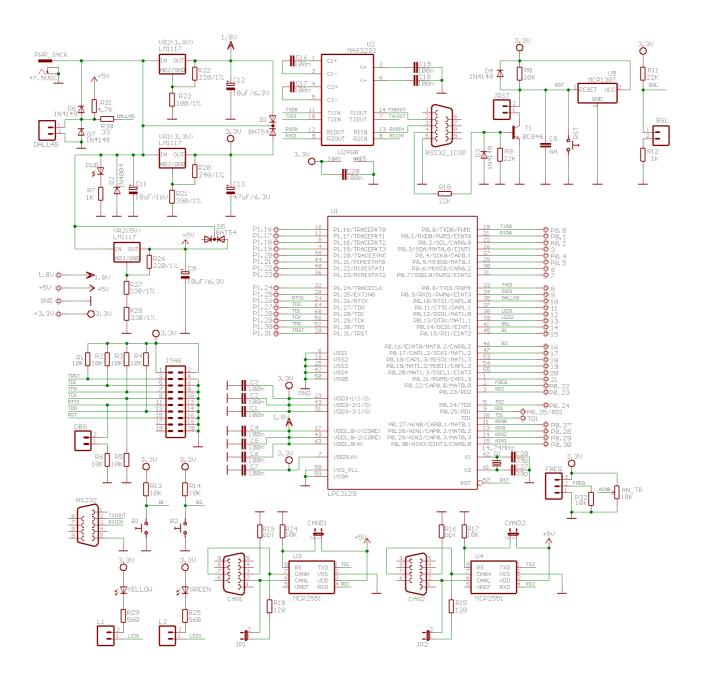
Board LPC-P2129

Hardware details Describes the hardware peripherials in detail


**Programming** describes how to write programs for the P2129 Board.

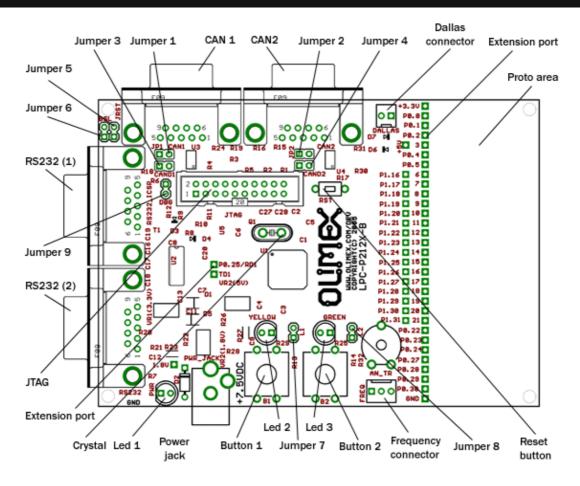
Revision 01.01.2005 Creating




**Picture** 

This is picture of LPC-P2129 Development board.




Board LPC-P2129

P2129



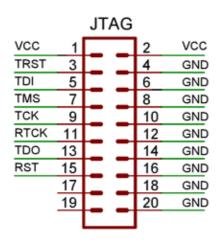


#### P2129 Board



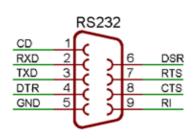


# LPC P2129 Hardware description


# **Peripherials**

| Unit                | Description                                                                                                                          |  |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------|--|
| COM Port1           | RS232 DB9 Female connector for LPC2129 UART0.                                                                                        |  |
| COM Port2           | RS232 DB9 Female connector for LPC2129 UART1.                                                                                        |  |
| CAN Connector 1     | RS232 DB9 Male connector realizing CAN interface.                                                                                    |  |
| CAN Connector 2     | RS232 DB9 Male connector realizing CAN interface.                                                                                    |  |
| JTAG Connector      | 2x10 0,1" step connector for programming with ARM-JTAG.                                                                              |  |
| Frequency connector | Three pins frequency input connector                                                                                                 |  |
| Dallas Connector    | Interface to Dallas device connected to P0.10/RTS1/CAP1.0 (PIN 35).                                                                  |  |
| Buttons             | Two buttons connected to interrupt ports Button 1 - P0.15 / RI1 / EINT2 (PIN 45) Button 2 - P0.16 / EINT0 / MAT0.2 / CAP0.2 (PIN 46) |  |
| Leds                | Yellow status led connected to P0.12 (PIN 38), green status led connected to P0.13 (PIN 39) and power supply indicator.              |  |

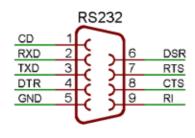
### **Technical characteristics**


| Parameter             | Description                                                               |  |
|-----------------------|---------------------------------------------------------------------------|--|
| Voltage Supply        | min 7.5V DC, max 9.0V DC                                                  |  |
| CPU                   | LPC2129                                                                   |  |
| Crystals              | Crystal 1 - Q1 - 14,745 MHz HF crystal                                    |  |
| Board dimensions      | 115x80 mm (4.5x3.2")                                                      |  |
| PCB                   | FR-4, 1.5 mm (0,062"), green soldermask, white silkscreen component print |  |
| Operating Temperature | form 0°C to 70°C                                                          |  |

# **JTAG Connector**



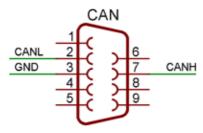
| Pin / Name | Connected to: | Functionality |
|------------|---------------|---------------|
| 1 - VCC    | VCC           | -             |
| 2 - VCC    | VCC           | -             |
| 3 - TRST   | PIN 20        | P1.31 / TRST  |
| 4 - GND    | GROUND        | -             |
| 5 - TDI    | PIN 60        | P1.28 / TDI   |
| 6 - GND    | GROUND        | -             |
| 7 - TMS    | PIN 52        | P1.30 / TMS   |
| 8 - GND    | GROUND        | -             |
| 9 - TCK    | PIN 56        | P1.29 / TCK   |
| 10 - GND   | GROUND        | -             |
| 11 - RTCK  | PIN 24        | P1.26 / RTCK  |
| 12 - GND   | GROUND        | -             |
| 13 - TDO   | PIN 64        | P1.27 / TDO   |
| 14 - GND   | GROUND        | -             |
| 15 - RST   | PIN 57        | RST           |
| 16 - GND   | GROUND        | -             |
| 17         | no connected  | -             |
| 18 - GND   | GROUND        | -             |
| 19         | no connected  | -             |
| 20 - GND   | GROUND        | -             |


# **RS232 Connector 1**



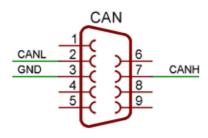
| Pin / Name | Connected to: | Functionality              |
|------------|---------------|----------------------------|
| 1 - CD     | not connected | -                          |
| 2 - RXD    | PIN 19        | P0.0 / TXD0 / PWM1         |
| 3 - TXD    | PIN 21        | P0.1 / RXD0 / PWM3 / EINT0 |
| 4 - DTR    | SLIDE-SWITGH  | -                          |
| 5 - GND    | GROUND        | -                          |
| 6 - DSR    | not connected | -                          |
| 7 - RTS    | not connected | -                          |
| 8 - CTS    | not connected | -                          |
| 9 - RI     | not connected | -                          |

Max communication baud rate supported by LPC2138F is 448 kbps, maximum baud rate with MAX3232 driver on board is 250 kbps.


# RS232 Connector 2



| Pin / Name | Connected to: | Functionality              |
|------------|---------------|----------------------------|
| 1 - CD     | not connected | -                          |
| 2 - RXD    | PIN 33        | P0.8 / TXD1 / PWM4 / AD1.1 |
| 3 - TXD    | PIN 34        | P0.9 / RXD1 / PWM6 / EINT3 |
| 4 - RTS    | not connected | -                          |
| 5 - GND    | GROUND        | -                          |
| 6 - DSR    | not connected | -                          |
| 7 - RTS    | not connected | -                          |
| 8 - CTS    | not connected | -                          |
| 9 - RI     | not connected | -                          |


Max communication baud rate supported by LPC2138F is 448 kbps, maximum baud rate with MAX3232 driver on board is 250 kbps.

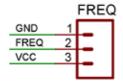
# CAN Connector 1



| Pin / Name | Connected to: | Functionality |
|------------|---------------|---------------|
| 1 -        | not connected | -             |
| 2 - CANL   | MCP2551 PIN 6 | CANL          |
| 3 - GND    | GROUND        | -             |
| 4 -        | not connected | -             |
| 5 -        | GROUND        | -             |
| 6 -        | not connected | -             |
| 7 - CANH   | MCP2551 PIN 7 | CANH          |
| 8 -        | not connected | -             |
| 9 -        | not connected | -             |

# **CAN Connector 2**




| Pin / Name | Connected to: | Functionality |
|------------|---------------|---------------|
| 1 -        | not connected | -             |
| 2 - CANL   | MCP2551 PIN 6 | CANL          |
| 3 - GND    | GROUND        | -             |
| 4 -        | not connected | -             |
| 5 -        | GROUND        | -             |
| 6 -        | not connected | -             |
| 7 - CANH   | MCP2551 PIN 7 | CANH          |
| 8 -        | not connected | -             |
| 9 -        | not connected | -             |

# **Dallas Connector**

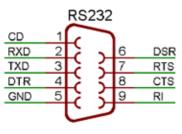


| Pin / Name | Connected to: | Functionality                 |
|------------|---------------|-------------------------------|
| 1 - DALLAS | PIN 35        | P0.10 / RTS1 / CAP1.0 / AD1.2 |
| 2 - GND    | GROUND        | -                             |

# **Frequency Connector**



| Pin / Name | Connected to: | Functionality           |
|------------|---------------|-------------------------|
| 1 - GND    | +3.3V         | -                       |
| 2 - FREQ   | PIN 2         | P0.22 / CAP0.0 / MAT0.0 |
| 3 - VCC    | GROUND        | -                       |


# **Jumpers**

| Jumpers         | Position | Description                                            |
|-----------------|----------|--------------------------------------------------------|
| Jumper 1 (J1)   |          | CAN1 Terminator disable                                |
|                 |          | CAN1 Terminator enable (120 ohm)                       |
| lumner 2 (12)   |          | CAN2 Terminator disable                                |
| Jumper 2 (J2)   |          | CAN2 Terminator enable (120 ohm)                       |
| Jumper 3        |          | Enable CAN1 driver                                     |
| (CAND1)         |          | CAN1 driver is in standby mode (don't use)             |
| Jumper 4        |          | Enable CAN2 driver                                     |
| (CAND2)         |          | CAN2 driver is in standby mode (don't use)             |
| Jumper 5 (JRST) |          | Disable ICSP programming.                              |
| Jumper 6 (BSL)  |          | Enable ICSP programming - via COM Port (RS2321).       |
| 7(4)            |          | Yellow led is not connected.                           |
| Jumper 7 (L1)   |          | Yellow led connected to P0.12 / DSR1 / MAT1.0 (PIN 38) |
| Jumper 8 (L2)   |          | Green led is not connected.                            |
|                 |          | Green led connected to P0.13 / DTR1 / MAT1.1 (PIN 39)  |
| Jumper 9 (DBG)  |          | Disable JTAG programming.                              |
| Jumper 9 (DBG)  |          | Enable JTAG programming.                               |



# **Programming: RS232**

### **RS232 Connector**



| Pin / Name | Description          |
|------------|----------------------|
| 1 - CD     | Carrier Detected.    |
| 2 - RXD    | Received Data.       |
| 3 - TXD    | Transmited Data.     |
| 4 - DTR    | Data Terminal Ready. |
| 5 - GND    | Signal Ground.       |
| 6 - DSR    | Data Set Ready.      |
| 7 - RTS    | Request to Send.     |
| 8 - CTS    | Clear to Send        |
| 9 - RI     | Ring Indicator.      |

### Register description

| Register | Address             | Function                                       |
|----------|---------------------|------------------------------------------------|
| U0RBR    | 0xE000C000 DLAB = 0 | Receiver Buffer Register. Input data buffer.   |
| U0THR    | 0xE000C000 DLAB = 0 | Transmit Holding Register. Output data buffer. |
| U0DLL    | 0xE000C000 DLAB = 1 | Divisor Latch LSB.                             |
| U0DLM    | 0xE000C000 DLAB = 1 | Divisor Latch MSB.                             |
| U0IER    | 0xE000C004 DLAB = 0 | Interrupt Enable Register.                     |
| U0IIR    | 0xE000C008          | Interrupt ID Register.                         |
| U0FCR    | 0xE000C008          | FIFO Control Register.                         |
| U0LCR    | 0xE000C00C          | Line Control Register.                         |
| U0LSR    | 0xE000C014          | Line Status Register.                          |
| U0SCR    | 0xE000C01C          | Scratch Pad Register.                          |
| U0TER    | 0xE000C030          | Transmit Enable.                               |

### 1.Initialization

### 1.1. Set Line Control Register

| U0LCR | Function           | Description                                                                                                 | Reset<br>Value |
|-------|--------------------|-------------------------------------------------------------------------------------------------------------|----------------|
| 1:0   | Word Length Select | 00: 5 bit character length 01: 6 bit character length 10: 7 bit character length 11: 8 bit character length | 0              |
| 2     | Stop Bit Select    | 0: 1 stop bit<br>1: 2 stop bits (1.5 if U0LCR[1:0]=00)                                                      | 0              |
| 3     | Parity Enable      | Disable parity generation and checking     Enable parity generation and checking                            | 0              |
| 5:4   | Parity Select      | 00: Odd parity 01: Even parity 10: Forced 1 stick parity                                                    | 0              |

|   |                          | 11: Forced 0 stick parity                                                                                                                                           |   |
|---|--------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 6 | Break Control            | <ul><li>0: Disable break transmission</li><li>1: Enable break transmission.</li><li>Output pin UART0 TxD is forced to logic 0 when U0LCR6 is active high.</li></ul> | 0 |
| 7 | Divisor Latch Access Bit | <ul><li>0: Disable access to Divisor Latches</li><li>1: Enable access to Divisor Latches</li></ul>                                                                  | 0 |

### 1.2. UARTO Baudrate Calculation

The U0DLL and U0DLM registers together form a 16 bit divisor where U0DLL contains the lower 8 bits of the divisor and U0DLM contains the higher 8 bits of the divisor.

```
devisor = pclk / (16 * baud);
```

#### 1.3. Set Functionality to pins

Set functionality to P0.0 -> TX0 and P0.1 -> RXD0

#### 2. RS232 Communication

### 2.1. Write to RS232

Use follow algorithm to send data:

- fill U0THR register with data to write
- wait shift all data
- clear interrupt flag

#### 2.2. Read from RS232

Use follow algorithm to receive data:

- wait read all data
- clear interrupt flag
- get data from U0RBR

#### 3. Example

#### Initialize:

```
//set Line Control Register (8 bit, 1 stop bit, no parity, enable DLAB)
UOLCR\_bit.WLS = 0x3; //8 bit
UOLCR\_bit.SBS = 0x0;
                        //1 stop bit
UOLCR\_bit.PE = 0x0;
                        //no parity
UOLCR_bit.DLAB = 0x1;  //enable DLAB
//devisor
UODLL = Pclk / (16 * baud);
                                 //low bite
U0DLM = Pclk / (16 * baud)>>8;
                                 //high bite
U0LCR &= \sim 0 \times 80;
//set functionality to pins: port0.0 -> TX0, port0.1 -> RXD0
PINSEL0\_bit.P0\_0 = 0x1;
PINSEL0_bit.P0_1 = 0x1;
```

#### Read Data:

```
//when U0LSR_bit.DR is 1 - U0RBR contains valid data
while (U0LSR_bit.DR == 0);
return U0RBR;
```

# Write Data:

```
//when UOLSR_bit.THRE is 1 - UOTHR contains valid data.
while (UOLSR_bit.THRE == 0);
UOTHR = ch0;
```



# **Programming: Real Time Clock**

### Register description

| Register | Address    | Function                                                                                                                                         |
|----------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| ILR      | 0xE0024000 | Interrupt Location. Reading this location indicates the source of an interrupt. Writing a one to the appropriate bit at this location clears the |
|          |            | associated interrupt.                                                                                                                            |
| CTC      | 0xE0024004 | Clock Tick Counter. Value from the clock divider.                                                                                                |
| CCR      | 0xE0024008 | Clock Control Register. Controls the function of the clock divider.                                                                              |
| CIIR     | 0xE002400C | Counter Increment Interrupt. Selects which counters will generate an                                                                             |
| CIIN     |            | interrupt when they are incremented.                                                                                                             |
| AMR      | 0xE0024010 | Alarm Mask Register. Controls which of the alarm registers are masked. RW                                                                        |
| CTIMEO   | 0xF0024014 | Consolidated Time Register 0                                                                                                                     |
|          |            | Consolidated Time Register 1                                                                                                                     |
|          |            | Consolidated Time Register 2                                                                                                                     |

#### 1.Initialization

#### 1.1. Turn on the 32KHz external clock

**CLKSRC** 

# (bit 4 from CCR Register)

- 0 Disable 32kHz external clock
- 1 Enable 32kHz external clock

### 1.2. Enable Interrupt

| CIIR | Function | Description                                                              |
|------|----------|--------------------------------------------------------------------------|
| 0    | IMSEC    | When one, an increment of the Second value generates an interrupt.       |
| 1    | IMMIN    | When one, an increment of the Minute value generates an interrupt.       |
| 2    | IMHOUR   | When one, an increment of the Hour value generates an interrupt.         |
| 3    | IMDOM    | When one, an increment of the Day of Month value generates an interrupt. |
| 4    | IMDOW    | When one, an increment of the Day of Week value generates an interrupt.  |
| 5    | IMDOY    | When one, an increment of the Day of Year value generates an interrupt.  |
| 6    | IMMON    | When one, an increment of the Month value generates an interrupt.        |
| 7    | IMYEAR   | When one, an increment of the Year value generates an interrupt.         |

## 1.3. Start the Real Time Clock

### CLKEN (bit 0 from CCR Register) Enable/Disable Real Time Clock

- 0 Disable Real Time Clock
- 1 Enable Real Time Clock

### 2. Example

#### Initialize:

```
CCR_bit.CLKEN = 0; //rtc disable

CCR_bit.CLKSRC = 1; //set external 32kHz oscillator

CCR_bit.CTCRST = 0; //disable reset

CCR_bit.CTTEST = 0; //disable test

AMR = 0; //initialize interrupt mask register of RTC

CIIR_bit.IMSEC = 1; //enable interrupt every seconds

ILR = 3; //clear all interrupt of RTC

CCR_bit.CLKEN = 1; //rtc enable
```



### **Programming: Blinking LED**

#### **GPIO Register map**

| Generic<br>name | Description                                                                                                                                                                                                                                        |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IOPIN           | <b>GPIO Port Pin value register</b> . The current state of the GPIO configured port pins can always be read from this register, regardless of pin direction and mode. Activity on non-GPIO configured pins will not be reflected in this register. |
| IOSET           | <b>GPIO Port Output set register.</b> This register controls the state of output pins in conjunction with the IOCLR register. Writing ones produces highs at the corresponding port pins. Writing zeroes has no effect.                            |
| IODIR           | <b>GPIO Port Direction control register.</b> This register individually controls the direction of each port pin.                                                                                                                                   |
| IOCLR           | <b>GPIO Port Output clear register.</b> This register controls the state of output pins. Writing ones produces lows at the corresponding port pins and clears the corresponding bits in the IOSET register. Writing zeroes has no effect.          |

#### **Pin Connect Block Register Map**

| Register name | Description                                                  |
|---------------|--------------------------------------------------------------|
| PINSEL0       | PINSEL0 Pin function select register 0 (from P0.0 to P0.15)  |
| PINSEL1       | PINSEL1 Pin function select register 1 (from P0.16 to P0.31) |
| PINSEL2       | PINSEL2 Pin function select register 2                       |

#### 1. Initialization (general case)

#### 1.1. Set first functionality to port

```
PINSELO = 0x00; //set first functionality to port (from P0.0 to P0.15)
```

#### 1.2. Set port which is connected to LED as output

```
IOODIR = 0xFF; //set P0.0 to P0.15 port as output
```

#### 2. Led blink (general case)

```
IOOCLR = 0xFF; // set P0.0 - P0.15 to low IOOSET = 0xFF; // set P0.0 - P0.15 to high
```

#### 3. Example - blink led, which is connected to P0.12

#### //Initialization

 $IOOCLR_bit.PO_12 = 0x1;$  // set PO.12 port to high



### Links

### 1. Philips web site

LPC2129 product datasheets, application notes, etc info: http://www.semiconductors.philips.com/

#### 2. LPC microcontrollers discussion forum

http://groups.yahoo.com/group/lpc2000/ - forum for discussions on LPC2000 ARM microcontrollers http://groups.yahoo.com/group/arm-olimex/ - forum for discussions on Olimex ARM boards

### 3. IAR Systems EW-ARM C compiler and debugger

http://www.iar.com/Products/?name=EWARM

#### 4. Rowley associates CrossWorks for ARM C compiler and debugger

http://www.rowley.co.uk