

FIXED VOLTAGE REGULATOR (POSITIVE)

LM7806

3-TERMINAL 1A POSITIVE VOLTAGE REGULATORS

The LM78XX series of three-terminal positive regulators. fixed output voltage and TO-220 package - are designed for a wide range of applications.

These applications include on-card regulation for elimination of noise and distribution problems associated with single point regulation. In addition, they can be used with power pass elements to make high current voltage regulators. If adequate heat sinking is provided, each of these regulators can deliver up to 1A of output current.

Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltage and currents.

FEATURES

- \diamond Output current in excess of 1A
- \diamond No external components required
- \diamond Internal short circuit current limiting
- ◊ Internal thermal overload protection
- ♦ Output transistor safe-area compensation
- ♦ Output voltage offered in 4% tolerance

ABSOLUTE MAXIMUM RATINGS

Characteristic		Symbol	Value	Unit	
Input Voltage	LM7805 ~ LM7818		35	v	
	LM7824	Vl	40		
Operating Junction Temperature		Topr	0 ~ +150	°C	
Operating Temperature		Topr	0 ~ +125		
Storage Temperature		Tstg	-65 ~ +150		

LM7806

FIXED VOLTAGE REGULATOR (POSITIVE)

1. BLOCK DIAGRAM

2. TYPICAL APPLICATIONS

Note:

- (1) To specify an output voltage, subsitute voltage value for "XX".
- (2) C1 is required if regulator is located in appreciable distance from power supply filter.
- (3) Co improves stability and transient response.

FIXED VOLTAGE REGULATOR (POSITIVE)

LM7806

LM7806 ELECTRICAL CHARACTERISTICS

(Refer to test circuit, TMIN<TJ<TMAX, 10=500mA, VI=11V, CI=0.33µF, Co=0.1µF, unless otherwise specified)

Characteristic	Symbol	Test Condition		Min.	Тур.	Max.	Unit
	Vo	TJ=25°C		5.75	6.0	6.25	v
Output Voltage		5.0mA≤I₀≤1.0A, PD≤15W VI=8V to 21V VI=9V to 21V		5.7	6.0	6.3	
	ΔVo	TJ=25°C	Vo=8V to 25V		5	120	mV
Line Regulation			VI=9V to 13V		1.5	60	
	Δνο	TJ=25°℃	Io=5mA to 1.5A		9	120	mV
Load Regulation			Io=250mA to 750mA		3	60	
Quiescent Current	IQ	TJ=25°C			5	8	mA
	ΔΙQ	Io=5mA to 1A				0.5	
Quiescent Current Change		VI=8V to 25V				1.3	mA
		VI=9V to 25V					1
Output Voltage Drift	$\Delta Vo/\Delta T$	Io=5mA			-0.8		mV/°C
Output Noise Voltage	VN	$f=10Hz$ to $100kHz$ TA= $25^{\circ}C$			45		μV
Ripple Rejection	RR	f=120Hz Vo=9V to 19V		59	75		dB
Dropout Voltage	VD	Io=	TA $T_J=25^{\circ}C$		2		v
Peak Current	Ірк		TJ=25°C		2.2		A
Output Resistance	Ro	f=1kHz			19		ΜΩ
Short Circuit Current	Isc	VI=3	$TA = 25^{\circ}C$		250		mA

Note s:

* TMIN<TJ<TMAX

LM78XX; TMIN= $0^{\circ}C$, TMAX=125 $^{\circ}C$

* Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.