LA5613

VCR Regulator and Control Amplifier

Overview

The LA5613 is an IC that includes an independently on/off switchable 5-V/0.7-A low-saturation regulator, an 11.3-V/0.3-A ripple filter, and a control amplifier on chip. It is optimal for use in VCR and similar products.

Functions and Features

- 5-V/0.7-A low-saturation regulator (Includes an on/off function.)
- 11.3-V/0.3-A ripple filter (Includes an on/off function.)
- Switching regulator control amplifier
- Includes input overvoltage and thermal protection circuits on chip.

Package Dimensions

unit: mm

3046B-SIP10F

Specifications Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit	
	V _{CC} 1 max		14		
Maximum supply voltage	V _{CC} 2 max	$V_{CC}1 \ge V_{CC}2$	V _{CC} 1	v	
Allowable power dissipation	Pd max	No heat sink	1.7	W	
Operating temperature	Topr		-20 to +80	°C	
Storage temperature	Tstg		-40 to +150	°C	

Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Input voltage	V _{CC} 1		12.3 ± 0.4	V
Input voltage	V _{CC} 2		6 ± 0.5	V
Output current 1	I _O 1		0 to 0.3	Α
Output current 2	I _O 2		0 to 0.7	A

SANYO Electric Co., Ltd. Semiconductor Bussiness Headquarters TOKYO OFFICE Tokyo Bldg., 1-10, 1 Chome, Ueno, Taito-ku, TOKYO, 110 JAPAN

Electrical Characteristics at $Ta = 25^{\circ}C$ in the specified Test Circuit

Parameter	Symbol	Symbol Conditions		Ratings			
Parameter	Symbol	Symbol Conditions		typ	max	Unit	
[No Load] V_{STB} = high, $V_{CC}1$ = 12.3 V, V	$V_{\rm CC}2 = 6$ V, I_01 and I_0	2 = 0 A		•			
Quiescent current	I _{IN} 1		-	20	30	mA	
Quiescent current	I _{IN} 2		-	0.2	0.3	mA	
[Output 1] V_{STB} = high, V_{CC} 1 = 12.3 V, V	$V_{\rm CC}2 = 6 \text{ V}, \text{ I}_{\rm O}1 = 0.3 \text{ /}$	A.					
Output voltage 1	V _O 1		10.9	11.3	-	V	
Dropout voltage	V _{DROP} 1		-	1.0	1.4	V	
Peak output current	I _{OP} 1		0.3	-	-	А	
Output low-level voltage	V _O 1 _{OFF}		-	-	0.2	V	
[Output 2] V_{STB} = high, V_{CC} 1 = 12.3 V, V	$V_{\rm CC}2 = 6 \text{ V}, \text{ I}_{\rm O}2 = 0.7 \text{ /}$	A.					
Output voltage 2	V _O 2		4.9	5.1	5.3	V	
Dropout voltage	V _{DROP} 2		-	0.3	0.5	V	
Line regulation	$\Delta V_{OLN} 2$	$6 \text{ V} \le \text{V}_{CC} 2 \le 7 \text{ V}$	-	-	20	mV	
Load regulation	$\Delta V_{OLD} 2$	$0.1 \text{ A} \le I_0 2 \le 0.7 \text{ A}$	-	-	300	mV	
Peak output current	I _{OP} 2		0.7	-	-	А	
Output short-circuit current	I _{OSC} 2		-	-	0.75	А	
Ripple rejection	Rrej2	f = 120 Hz, 6 V \leq V _{CC} 2 \leq 7 V	-	50	-	dB	
Output low-level voltage	V _O 2 OFF		-	-	0.2	V	
[Input Overvoltage Protection]							
Detection voltage	V _{HVTH}		7.6	8.0	8.4	V	
[Output 1 and Output 2 On/Off Control]	V _{CC} 1 = 12.3 V, V _{CC} 2 =	6 V					
Output off control voltage	V _{STB} L	V _O 1 and V _O 2: off	-	-	1.0	V	
Output on control voltage	V _{STB} H	V _O 1 and V _O 2: on	3.0	-	V _{CC} 1		
[Control Amplifier] $V_{CC}1 = 12.3 \text{ V}, V_{CC}2$	= 6 V						
Control output current (sink)	ICONT	V _{CC} 1 = 12.8 V	10	-	-	mA	
Resistance ratio	KR	KR = R1/R2, V _{REF} = 1.28 V typ	-	8.61	-		
Output inverted input voltage	V _{CC} 1 - ERR	I _O 1 = 0.3 A, I _O 2 = 0.7 A	11.9	12.3	12.7	V	

Test Circuit

Pin Functions

Pin No.	Symbol	Function
1	V _{CC} 2	Low-voltage input
2	V _O 2	5.1-V/0.7-A regulator output, with on/off, current limiter thermal shutdown.
3	STB	V ₀ 1 and V ₀ 2 on/off control. Active high.
4	GND	Substrate of the LA5613 (minimum potential)
5	V _O 1-FIL	V ₀ 1 ripple filter capacitor connection
6	V _O 1	Ripple filter 0.3-A output, with on/off, current limiter thermal shutdown.
7	V _{CC} 1	High-voltage input
8	SENSE	V _{CC} 1 voltage detection
9	NF	Phase compensation and V _{CC} 1 adjustment. Connect resistors between this pin and SENSE or ground.
10	V _O ERR	Switching register control amplifier drive output

Notes: 1. CL: Current limiter

2. TSD: Thermal shutdown

Function Table (o: built-in, x: not built-in)

Circuit block Function	V _O 1	V _O 2	Control amplifier
Input line	V _{CC} 1	V _{CC} 2	V _{CC} 1
Output current protection	0	О	×
Thermal shutdown protection	О	О	×
On/off control	О	О	×
Overvoltage protection	О	0	О

Usage Notes

- The relationship $V_{CC} 1 \ge V_{CC} 2$ must hold at all times when power is applied.
- Power should be applied to $V_{CC}1$ and $V_{CC}2$ simultaneously. Do not use this IC with only one or the other voltage applied.
- This IC will be destroyed if the V_O1 output load is shorted. Do not short the outputs of this IC.

Logic Table

Conditions: When $V_{CC}1 \ge V_{CC}2$

(However, the conditions 11.9 V \leq V_{CC}1 \leq 12.7 V and 5.5 V \leq V_{CC}2 \leq 6.5 V must also apply.)

STB	V ₀ 1, V ₀ 2
L or open	L
Н	Н

Notes: 1. "H" for STB denotes high level; "L" denotes low level.

2. "H" for V_O denotes output ON voltage; "L" denotes output OFF voltage.

Equivalent Circuit Block Diagram and Sample Application Circuit

- No products described or contained herein are intended for use in surgical implants, life-support systems, aerospace equipment, nuclear power control systems, vehicles, disaster/crime-prevention equipment and the like, the failure of which may directly or indirectly cause injury, death or property loss.
- Anyone purchasing any products described or contained herein for an above-mentioned use shall:
 - ① Accept full responsibility and indemnify and defend SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors and all their officers and employees, jointly and severally, against any and all claims and litigation and all damages, cost and expenses associated with such use:
 - ② Not impose any responsibility for any fault or negligence which may be cited in any such claim or litigation on SANYO ELECTRIC CO., LTD., its affiliates, subsidiaries and distributors or any of their officers and employees jointly or severally.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. SANYO believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.

This catalog provides information as of May, 1997. Specifications and information herein are subject to change without notice.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.