
Module: KT0004

Product Description:

Keyestudio Basic Starter Kit includes:
1X Arduino Uno R3 board
8x 220 Ω resistor
5x 1K Ω resistor
5x 10K Ω resistor
1x 10K Ω Pot
1x Joy stick Module & Knob
1x LED - RGB, Module
1x Buzzer (passive)
1x Buzzer (active)
4x button switch 6x6
10x button switch 12x12
1x LM35 Temp Sensor
2x Ball tilt sensor
3x Photo Resistor LDR
1x Flame sensor IR
1x IR receiver
1x IR remote control
1x 7-seg LED 1x module
1x 7-seg LED 4x module
5x LED - Blue
5x LED - Red
5x LED - Yellow
1x IC 74HC595N 16-pin DIP
1x Stepper Drive Module
1x1602 LCD
1x9g sevro
1x Relay, Module
1x Stepper motor 5-wire
1x 170-pin Breadboard Shield
1x 830-pin Breadboard
1x 6-cell AA Battery holder
1x 10 way ribbon cable socket
30x Assorted mail jumpers
1x 40 Way SIL header pins
1x USB cable
1x Project box 230x165x60mm

More at http://wiki.keyestudio.com/index.php/Main_Page

ARDUINO BASIC STARTER KIT

© 2016 Keyestudio. All Rights Reserved.
http://www.keyestudio.com

Make it easy to learn ARDUINO.
This is the basic Starter Kit, developed specially for those beginners who are interested in Arduino. You will have a set of Arduino's most
common and useful electronic components. What's more. We will offer you a detailed tutorials including project introduction and their source
codes.You may learn about Arduino through using these basic projects. This kit will help you control the physical world with sensor.

Project Index

1 Flashing LED

2 Runing LEDs

3 Traffic light design

4 Key control LED

5 Tilt switch

6 Quiz Game Controller

7 Control RGB LED module

8 Controlling LEDs with 74HC595

9 Analog value read

10 PWM regulates the brightness of the LED

11 Buzzer sounds

12 Light to sound

13 Light Controlled LED

14 Application experiment with relay

15 Fire Alarm

16 LM35 Temperature Sensor

17 Digital Voltmeter Experiment

18 PS2 Joystick Nodule

19 Liquid Crystal Display

20 Servo Motor Control

21 Stepper Motor

22 7 Segment x1 Display

23 7 Segment x4 Display

24 Infrared Remote Control

© 2016 Keyestudio. All Rights Reserved.
http://www.keyestudio.com

Flashing LED / Blinking LED:

LED light experiment is one of the basic experiments, The LED of Arduino has
been used to the experiment, this time we use other I/O port and the external
line LED lamp to finish the experiment, experiment components we need

Arduino UNO controller and USB
download cable experiments list is as
follows:

1. Red 5mm LED*1

2. 220Ω directly insert resistor*1

3. Breadboard*1

4. Breadboard jumper wires*1 lot

The next step we follow the lights Experimental schematic link physically as
shown below, here we use on the digital port interface side. The use of
light-emitting diode LED, to connect with a current limiting resistor, here a 220
ohm resistance, otherwise the current will be too high and burn the light
emitting diode.

Experiment schematic

diagram

Connection diagram figure:

According to the above circuit, you can start writing programs, that flashes the
LED ON for 1 second and 1 seconds OFF. This procedure is very simple and
similar to the Arduino built-in routines except that it changes the Blink 13 digital
port to number 10.

Reference program：

int ledPin = 10; // Define Pin number 10

 void setup()
{
pinMode(ledPin, OUTPUT); // set this pin as output
}

void loop()
{
digitalWrite(ledPin, HIGH); // light ON
delay(1000); // wait for 1 sec
digitalWrite(ledPin, LOW); // light OFF
delay(1000); // wait for 1 sec.
} // END program

After download this program you can see our 10 port is connected with lights
and flashing, so that our experimental result is LED keep flashing, interval is
approximately one second.

The lights Blinking experiment is completed. Thank you.

Runing LEDs:

1) Experiment devices

Led light x6

220Ω resistor x6

Colorful breadboard experimental jumpers

2) The experimental connection

According to the wiring method of diodes, six LED lights were attached to a digital pins 2~7. As

shown in fig.:

Wiring flow water light experiment:

Connection：

3) The experiment principle

In life we often see some billboards composed of various colors of LED lights. LED lamp in

different locations constantly changing which form various effect. This section is the use of

LED to program and simulate advertising lamp effect.

 Program for Reference:

 int BASE = 2 ; // The first LED connected I/O pin.

 int NUM = 8; // number of LED used.

 void setup() {

 for (int i = BASE; i < BASE + NUM; i ++) //Add +1

 {

 pinMode(i, OUTPUT); // Set digital I/O pin as outputs

}

}

 void loop() {

 for (int i = BASE; i < BASE + NUM; i ++) //Add +1

 {

 digitalWrite(i, LOW); // Set the digital I/O pin output to "low", ie gradually turn off the lights

 delay(200); //Wait 200 milliseconds.

}

 for (int i = BASE; i < BASE + NUM; i ++) //Add +1

 {

digitalWrite(i, HIGH); // Set the digital I/O pin output to "high", ie gradually turn on the lights

delay(200); //Wait 200 milliseconds

}

} // END program

Results: can see the LED light on the run.

Traffic light design:

Above we have completed the control experiment of single lamp, then we'll do a slightly more

complex traffic light experiment a bit, actually you can see out of this experiment is to extend

the above single lamp experiment into 3 color light, we can realize our simulation traffic light

experiment. We need to complete the experiment device with the Arduino controller and the

download line and also need hardware are as follows:

Red M5 lamp LED*1

Yellow M5 Lamp LED*1

Green M5 Lamp LED*1

220Ωresistor *3

Breadboard*1

Breadboard jumpers*1lot

Ready for the element we can be started, we can infer other things from one fact in

accordance with the above lights flashing experiment, below we provide reference schematic

diagram, we use are 10, 7, 4, the digital interface.

Schematic diagram：

Since it is a simulation of traffic lights, traffic lights red yellow green lights flashing time need to

simulate the real, we use Arduino delay () function to control the delay time, relatively the C

language is much simpler.

Reference program：：：：

int redled =10; // Define Red pin 8

int yellowled =7; // Define Yellow pin 7

int greenled =4; // Define Green pin 4

void setup()

{

pinMode(redled, OUTPUT); //Set Red pin as output

pinMode(yellowled, OUTPUT); // Set Yellow pin as output

pinMode(greenled, OUTPUT); // Set Green pin as output

}

void loop()

{

digitalWrite(greenled, HIGH); // Green ON

delay(5000); //wait 5 seconds

digitalWrite(greenled, LOW); // Green OFF

for(int i=0;i<3;i++) // Flashes alternately three times with yellow blinking effect

{

delay(500); //wait 0.5 of a second

digitalWrite(yellowled, HIGH); // Yellow ON

delay(500); //wait 0.5 of a second

digitalWrite(yellowled, LOW); // Yellow OFF

}

delay(500); //wait 0.5 of a second

digitalWrite(redled, HIGH); // Red ON

delay(5000); //wait 5 seconds

digitalWrite(redled, LOW); // Red OFF

} // End program

The download process is completed we can see our own design of traffic light control.

Note: this circuit design is very similar with flow water light.

Results: the green light will flash for 5 seconds, and then turn off, the yellow light flash 3 cycles,

the red light flash for 5 seconds, followed by cycle.

Experiment is completed, thank you.

Key control LED:

I/O means the INPUT interface and OUTPUT interface, small experiments so far we design

are applied to the output function of Arduino I/O. In this experiment, we will work on the input

function. Using Arduino I/O port to read external equipment output value, we complete an

experiment combined input output using a button and an LED, so that we can simply

understand the role of I/O. Key switch, everyone should know, which belongs to the switch

quantity (digital) component, pressed for closure (conducting) state. To complete this

experiment we need to use the elements are as follows：

Key switch*1

Red M5 lamp LED*1

220Ωresistor*1

10KΩresisitor*1

Breabboard*1

Breadboard jumpers*1 lot

We will connect the key to digital port pin 7, red LED and attach to digital port pin 11 the tactile

switch. Arduino controller can be used to pick up the switch keys and the lights. Can use ant

port pin 2 to 13, try not to use port 0 and 1 as this is the ports for programming and serial

monitoring, leave this to the experts. See interface circuit according to the diagram below.

Connection：

Below we begin to programming, let the lights light up when button is pressed, according to the

previous study that the program can be easily written, relative to the previous several

experiments with this experimental program add a conditional statement, here we use the if

statement, the Arduino program writing statement is based on the C language, so the

conditional statements C naturally are also applied to Arduino, like while, switch etc.. Here we

use the IF () statement which is simple and easy to understand for everyone to do demo.

We analyze the circuit when the button is pressed, the digital pin 7 can be read at a high level,

then we make the digital pin 11 output high level can make the LED ON, we judge if digital pin

7 is low level in the program, if it is, to low the digital pin 11 output for low, LED OFF. The same

principle as above.

Program for reference：：：：

int ledpin=11; //set LED pin

int inpin=7; //set switch pin

int val; // define the variable val.

 void setup()

{

pinMode(ledpin,OUTPUT); // set LED pin as output

pinMode(inpin,INPUT); //set switch pin as input

}

void loop()

{

val=digitalRead(inpin); // read digital pin 7 level assigned to val.

if(val==LOW) // Detect whether the button is pressed or not

{ digitalWrite(ledpin,LOW);}

else

{ digitalWrite(ledpin,HIGH);}

} // END program

The experimental results, and the phenomenon: when the button is pressed, LED lights up, not

pressed, LED does not light up.

This is pretty useless circuit as power to the switch will do the same. So let’s make it latch.

Using the same circuit and only changing the software.

Program for reference：：：：

int ledpin=11; //set LED pin

int inpin=7; //set switch pin

int val; // define the variable val.

boolean lastButton = LOW; //boolean = True or Fauls, High or Low, On or Off, 0 or 1.

boolean ledOn = false; // current state of LED

 void setup()

{

pinMode(ledpin,OUTPUT); // set LED pin as output

pinMode(inpin,INPUT); //set switch pin as input

}

void loop()

{

val=digitalRead(inpin); // read digital pin 7 level assigned to val.

if(val==LOW && lastButton ==LOW) // if it is, the buttonState is HIGH:

{

 // turn LED on:

 ledOn = !ledOn; // ! = invert last value

 lastButton = HIGH;

 }

else

{

 // turn LED off:

 lastButton = digitalRead(inpin); //set last button action

 }

 {

 digitalWrite(ledpin, ledOn);

 }

 } // END program

Copy this program, the lights with keys experiment is completed, the principle of this

experiment is very simple, widely used in a variety of circuit and electric appliances, real life,

everyone is not difficult to find that in a variety of devices, such as mobile phone when you

press any button backlight lamp will light up, this is the typical application. You can think of

LED as a relay, it can control the 220V lamp!

Tilt switch:
Tilt switch control LED light

1. The experimental device:

Tilt ball switch

Led x1

220Ω resistor

Colorful breadboard jumper lines: a certain number

The physical connection diagram:

The the LED is connected to the digital pin 8, tilt ball switch connected to the analog pin 5.

The experiment principle:

When one side of the switch is tilt below the horizon, switch get through, analog port voltage

value is about 5V (digital binary is 1023), light up led lights. When the other end tilt lower than

the switch horizontal position, analog port voltage value is about 0V (digital binary is 0), off the

LED lamp. Analog port voltage value in the procedure is higher than about 2.5V (the digital

binary is in the representation of 512), can know whether the tilt ball switch get through.

Reference program：：：：

 void setup()

{

 pinMode(11,OUTPUT); //set pin 8 output (LED)

}

void loop()

{

int i;// Defining value i

while(1)

{

 i=analogRead(0); //read analog

 if(i>512) //If more than 512 (2.5V)

 {

 digitalWrite(8,LOW); //LED ON

 }

 else // otherwise

 {

 digitalWrite(8,HIGH); //LED ON

 }

 }

}

The experimental phenomenon: the hand hold the bread board, when the inclination to a

certain extent, LED is lit. No tilt, LED is not lit.

Inclined to a certain extent, LED is lit, control in practical applications is usually relay.

Quiz Game Controller, First to respond experimental design
After the completion of the above experiments that a lot of friends can independently finish the experiment, this

experiment is the key control the lamp experiment expansion into 3 keys corresponding to 3 small LED,

occupying 7 digital I/O interface with a Quiz master reset key.

The circuit connection diagram

Program for reference:

int redled=8; //set LED Red

int yellowled=7; //set LED Yellow

int greenled=6; //set LED Greed

int redpin=5; //set LED Red

int yellowpin=4; //set LED Yellow

int greenpin=3; //set LED Greed

int restpin=2; //set reset button

int red;

int yellow;

int green;

void setup()

{

pinMode(redled,OUTPUT); //set output LED

pinMode(yellowled,OUTPUT); //set output LED

pinMode(greenled,OUTPUT); //set output LED

pinMode(redpin,INPUT); //set input SW

pinMode(yellowpin,INPUT); //set input SW

pinMode(greenpin,INPUT); //set input SW

}

void loop() // Press the key to start scan cycle.

{

red=digitalRead(redpin);

yellow=digitalRead(yellowpin);

green=digitalRead(greenpin);

if(red==LOW)RED_YES();

if(yellow==LOW)YELLOW_YES();

if(green==LOW)GREEN_YES();

}

void RED_YES() //The red light is ON until the reset button is pressed, ending the cycle

{

 while(digitalRead(restpin)==1)

 {

 digitalWrite(redled,HIGH);

 digitalWrite(greenled,LOW);

 digitalWrite(yellowled,LOW);

 }

 clear_led();

}

void YELLOW_YES() //The yellow light is ON until the reset button is pressed, ending the cycle

{

 while(digitalRead(restpin)==1)

 {

 digitalWrite(redled,LOW);

 digitalWrite(greenled,LOW);

 digitalWrite(yellowled,HIGH);

 }

 clear_led();

}

void GREEN_YES() //The green light is ON until the reset button is pressed, ending the cycle

{

 while(digitalRead(restpin)==1)

 {

 digitalWrite(redled,LOW);

 digitalWrite(greenled,HIGH);

 digitalWrite(yellowled,LOW);

 }

 clear_led();

}

void clear_led() //clear all LED’s

{

 digitalWrite(redled,LOW);

 digitalWrite(greenled,LOW);

 digitalWrite(yellowled,LOW);

}

The experimental phenomenon, the responder who reacted first by pressing, there LED will light up!

Then press the REST button to reset the LED to OFF.

After downloading this program, our own simple responder is complete.

Screenshot:

B Response successfully：：：：Green light flash

B Response successfully：：：：Red light flash

C Response successfully：：：：Yellow light flash

Control RGB LED module

The display principle, the principle is in a LED lamp, there are three kinds of colors of light, red,

green, blue. The driving voltage on each color of light is not the same. The brightness is not

the same. They are combined together, form a variety of colors.

3 colors input of the module

1. R = Input for Red

2. G = Input for Green

3. B = Input for Blue

Features of the module:

R,G,B, module has 3 colors that can be controlled by a MCU to create a full color spectrum.

Program for reference:

int ledPin = 13; // LED is connected to digital pin 13

int redPin = 11; // R red LED pin pin 11

int greenPin = 9; // G green LED pin pin 9

int bluePin = 10; // B blue LED pin pin 10

void setup()

{

 pinMode(ledPin, OUTPUT); //set at output

 pinMode(redPin, OUTPUT); //set at output

 pinMode(greenPin, OUTPUT); //set at output

 pinMode(bluePin, OUTPUT); //set at output

}

void loop() // run over and over again

{

 // Basic colors:

 color(255, 0, 0); //red

 delay(1000); //wait 1 second

 color(0,255, 0); //green

 delay(1000); //wait 1 second

 color(0, 0, 255); //blue

 delay(1000); //wait 1 second

 // Example blended colors:

 color(255,255,0); //yellow

 delay(1000); //wait 1 second

 color(255,255,255); // white

 delay(1000); //wait 1 second

 color(128,0,255); // purple

 delay(1000); //wait 1 second

 color(0,0,0); //all OFF

 delay(1000); //wait 1 second

}

void color (unsigned char red, unsigned char green, unsigned char blue) //Color control

function

{

 analogWrite(redPin, 255-red);

 analogWrite(bluePin, 255-blue);

 analogWrite(greenPin, 255-green);

}

Controlling LEDs with 74HC595:
74HC595 is simply an 8 bit shift register and a memory, and a three state output function. Here we use it to

control 8 LED lights. Why do we need to use the 74HC595 to control the lights? There will be many friends will

ask this question, I would like to ask is if we use Arduino control 8 small lights to occupy how many I/O? The

answer is 8, but how many I/O ports Arduino UNO has? Including the simulation interface is about 20.These 8

LED’s take too many resources. We can reduce the number I/O ports using the 74HC595. Using 74HC595 we

can use 3 digital I/O port to control 8 LED lights. Here are the components we need to prepare.

74HC595 directly insert chip*1

Red 5mm LED*4

Green 5mm LED*4

220Ω resistor*8

Breadboard*1

Breadboard jumper lines*1 lot

Ready for the element we connect circuit according to the diagram below.

Note: The 13 pins OE of 74HC595 should connect with GND

This circuit diagram may seem complicated. After we carefully analysis and combined with real projects will find it

easy.

Program for reference:

int data = 2; //set pin 14 of 74HC595 data input SER

int clock = 5; // set pin 11 of 74HC595 clock

int latch = 4; // set pin 12 of 74HC595 Output memory latch line RCLK

int ledState = 0;

const int ON = HIGH;

const int OFF = LOW;

void setup()

{

pinMode(data, OUTPUT); // set output

pinMode(clock, OUTPUT); // set output

pinMode(latch, OUTPUT); // set output

}

void loop()

{

for(int i = 0; i < 256; i++)

{

updateLEDs(i);

delay(500);

}

}

void updateLEDs(int value)

{

digitalWrite(latch, LOW); // latch OFF

shiftOut(data, clock, MSBFIRST, ~value); //Serial data output, high first

digitalWrite(latch, HIGH); // latch ON

}

You can see 8 lights flashing beautifully after you uploaded the program.

The experimental phenomenon is to see eight LED display eight bit binary number, cycle 1.

Analog value read:
This experiment we have to start learning about the use of analog I/O interface, Arduino has

Analog 0 to 5, totally 6 analog interfaces, the 6 interface can also be counted as interface

function reuse, besides the analog interface, the 6 interfaces can be used as digital interfaces,

the number is 14 – 19, after simply understanding, let's begin our experiment. Potentiometer is

a typical familiar value output component. This experiment is completed by it.

Components for use：

Potentiometer *1

Breadboard*1

Breadboard jumper lines *1 lot

In this experiment, we will read out analog values which are transited by potentiometer

resistance values, and then displayed on the screen, is the example of the application that we

are required to master after the completion of this experimental functions.

We connect the physical map first according to the following circuit:

We use the analog interface 0.

Program is also very simple, a analogRead (); statement can read analog export value,

Arduino 328 is a 10 bit A/D collection, so read analog value range is 0-1023, there is a difficult

problem in this experimental procedure that displaying on the screen of the numerical

problems, learning it is also very simple. We must first set baud rate in voidsetup (), displaying

the number belongs to Arduino and PC communication, so the baud rate of Arduino should be

as the same as to the correct value showed by PC software sets, otherwise it will be garbled or

is not displayed, one button in the lower right angle of Arduino software monitor window can

set the baud rate, baud rate set here should be the same as the baud rate which is set with the

program void setup ().The program should set the baud rate as Serial.begin(); statement in

parentheses is baud rate value. Second is the display numerical statement, Serial.print (); or

Serial.println (); the difference is that the latter shows the value and enter automatically, the

former does not, have introduced more about the statement before.

Reference program：

int potpin=0; //set pot to A0

int ledpin=13; //set onboard LED

int val=0;// variable val will be defined and assigned an initial value of 0

void setup()

{

pinMode(ledpin,OUTPUT); //set output LED

Serial.begin(9600);// Set the baud rate to 9600

}

void loop()

{

digitalWrite(ledpin,HIGH); //LED ON

delay(50); //wait 0.05 seconds

digitalWrite(ledpin,LOW); //LED OFF

val=analogRead(potpin); // Read the value of analog interface 0 and assign it to val

Serial.println(val); //print value to serial monitor

}

Reference program uses Arduino digital 13 built-in LED lights, read a value each time, lights

will flash for once.

Below is the readout value simulation.

The analog value is read out:

The experimental phenomenon: when you rotate the potentiometer knob can see changes in

the numbers on the screen, read analog value this method will always be with us, simulated

read is very commonly used functions, because many sensors are analog value output, we

read that the simulated values after the appropriate algorithm processing, can be applied to

the function we need to realize.

PWM regulates the brightness of the LED:

Pulse width modulation (PWM) is a kind of digital coding method to analog signal level,

because the computer can not output analog voltage, can output 0 or 5V digital voltage value,

we can make code for a specific level of analog signal through the use of high resolution

counter, using the duty cycle of the square wave modulation. PWM signal is still of digital,

because at any moment, the DC power supply of full magnitude is 5V (ON), or 0V (OFF).

Voltage or current source is added to the simulated load by a pass (ON) or off (OFF) the

repeated pulse sequence. That's when pass (ON), the DC power supply is added to the load,

which is broken; when off, the power supply is disconnected. As long as enough bandwidth,

any analog value can be encoded using the PWM. The output voltage value is calculated by

the on and the off time. The output voltage = (connect time/ pulse time) * maximum voltage

value

PWM is used in many places, lighting lamps, motor speed, sound production etc.

Here are the three basic parameters of PWM:

1. The amplitude of pulse width (minimum / maximum)

2. The pulse period (reciprocal of pulse times in 1 second)

3. The voltage level（such as：0V-5V）

The Arduino controller has 6 PWM interface are respectively 3, 5, 6, 9, 10, 11digital interface.

We have done the button control light experiment. it is the digital signal control digital interface

experiment. We did the potentiometer experiment also, this time we have to complete an

experiment potentiometer control light.

The components are required：：：：

potentiometer module*1

red LED 5mm*1

220Ω direct insert resistor

Breadboard*1

Breadboard jumper lines*1 lot

Potentiometer is for analog value input to analog interface, light we connect to the PWM

interface, which produce different PWM signal can make the lights change brightness

difference.

We connect the physical map according to the diagram below first.

Below is a physical connection diagram, connection mode is not fixed,you can choose the

simplest way to connect.

In the process of writing programs, we use Analog write analogWrite (PWM interface, analog

value) function, for the Analog write to the analogWrite () function, this function usage is also

very simple, we read potentiometer analog value signal in the experiment and assign it to the

PWM interface, correspondingly produce light brightness changes, and then display the

analog value on the screen. We can understand this program assign more the analog value to

the PWM interface part in the experimental program that we read analog value, we provide a

reference source below.

Reference program：

int potpin=0; //Set Pot pin to A0

int ledpin=11; //set Led pin to 9

int val=0; // temporarily store the variable values from the sensor

void setup()

{

pinMode(ledpin,OUTPUT); //set LED pin to output

Serial.begin(9600); // open and set the baud rate 9600

 // Note: The analog interface is automatically set to input

}

void loop()

{

val=analogRead(potpin); // Read the analog value of the pot and assign it to val.

Serial.println(val); // Show val variable in serial monitor

analogWrite(ledpin,val/4); // Turn on the LED and set the brightness (PWM output = val. Max = 255

delay(10);//wait 0.01 of a second

}

Upload the sketch and open the the Serial Monitor under the Tab TOOLS and see as you

adjust the pot the LED will change brightness and the serial monitor value will also change.

Buzzer sounds:

There are many interactive works with Arduino can be completed, the most common is the

most commonly used sound and light show, we has been in use LED lights in the experiment

before, the experiment will let everybody circuit make a sound, the most common components

which can make voice is a buzzer and a horn, by contrast, the buzzer is simpler easy to use

and so it is used in this experiment.

The component for use：

Buzzer*1--------------8pins connect the mark’+’

Key *1

Breadboard*1

Breadboard jumper lines*1 lot

Connect circuit as the diagram below:

When connecting the circuits, you should note that the buzzer has positive and negative points,

can be seen in the connection diagram of physical projects that the buzzer has two connection

wire, red and black This circuit connect procedure is very simple, and the front button control

lamp is similar experimental procedures, because the control interface buzzer is also that the

digital interface output high level can control buzzer.

Reference program：

int buzzer=8; //set pin8 for buzzer

void setup()

{

 pinMode(buzzer,OUTPUT); //set output

}

void loop()

{

unsigned char i,j; //define variables

while(1)

 {

for(i=0;i<80;i++) //play a sound at a frequency

 {

 digitalWrite(buzzer,HIGH); //buzzer ON

 delay(1); //wait 0.001 of a second or 1ms

 digitalWrite(buzzer,LOW); //buzzer OFF

 delay(1); //wait 0.001 of a second or 1ms

 }

 for(i=0;i<100;i++) //play a sound at a different frequency

 {

 digitalWrite(buzzer,HIGH); //buzzer ON

 delay(2); //wait 0.002 of a second or 2ms

 digitalWrite(buzzer,LOW); //buzzer OFF

 delay(2); //wait 0.002 of a second or 2ms

 }

 }

}

After uploading the program, the Buzzer experiment is finished.

Phenomenon: The buzzer keeps ringing.

Light to sound:
This experiment is very simple, but very useful, is also very interesting. This circuit is very

common, I hope readers will remember this usage, infer other things from one fact, this is the

goal. According to the light intensity, control buzzer sound frequency, sound intensity bigger,

more rapid.

The effect is obvious.

1. Experiment devices:

 photo resistor x1

 buzzer x1

Photo resistor

Physical circuit connection map

The experimental principle

Applying the methods of reading analog port voltage value, the photo resistor is directly

connected to the analog port, read analog value out, to control buzzer sound frequency with

the analog value, the stronger the light, the higher frequency of the buzzer

Reference program：

int buzzer = 9; //set buzzer to pin 9

int LDR_guangming = 0; // Define the input of the LDR

int val;

void setup()

{

pinMode(buzzer,OUTPUT); //Set output

}

void alarm_out(int del) // Sound frequency control function

{

delay(del); // Changing the frequency by changing the delay is very simple

digitalWrite(buzzer,HIGH);

 delay(del);

 digitalWrite(buzzer,LOW);

}

void loop()

{

val=analogRead(LDR_guangming); // Read the value of analog interface 0 and assign it to val

 if(val<700)

 {

 alarm_out(val); // Pass the read val value to the frequency control function

 }

}

The experiment phenomenon: After the uploading to the experiment board, you can use a

flashlight or other light source to illuminate photo resistor, you will hear light buzzer sound

frequency change when it is lit.

Light Controlled LED:
Complete all kinds of experiments above, we have some knowledge and understanding to use

the Arduino, after mastering input and output digital quantity, input analog quantity and the

production of PWM, we can start using some sensors appliance.

Photo resistor is a resistor using semiconductor photoelectric effect form resistor value

changed by incident light intensity; incident light intensity is stronger, resistance decreases,

the incident light is weak, resistance increases. Photo resistors are generally used for light

measurement, light control and light conversion (the light changes turn into electrical

changes).

Photo resistor and can be widely applied to various light control circuit, such as lamp control

and adjustment and so on, can also be used for optical switch.

In this experiment we first conduct a simple photosensitive resistance using experiment. Photo

resist since it is according to the intensity change resistance element, we need to simulate

read analog values, this experiment could learn from PWM interface experiment, change the

potentiometer to photo resistor and LED lamp brightness will be a corresponding change when

the light intensity is not the same.

Components for use:

Photo resistor*1

Red M5 lamp LED*1

10KΩlamp resistor*1

220Ωlamp resistor*1

Bread board*1

Bread board jumper lines*1 lot

Connect circuit according to the following diagram.

Connected and you can write program, the experimental procedure and experimental

procedures PWM similar place is that only in the PWM value can be slightly modified

according to our present circuit (modify places you can see reference).

Reference program：

int potpin=0; //Set input pin LDR

int ledpin=9; //set output pin

int val=0; // Define the variable val

void setup()

{

pinMode(ledpin,OUTPUT); //set output

Serial.begin(9600); //seria baud rate 9600

}

void loop()

{

val=analogRead(potpin); // Read the analog value of the sensor and assign it to val

Serial.println(val); // Display val variable value

 analogWrite(ledpin,val); // Turn on LED and set brightness (PWM output max 255)

delay(10); //wait 0.01 of a second

}

Here the sensor return value is divided by 4, the reason is the analog input analogRead ()

function returns the value range is 0 to 1023, while the analog output analogWrite () function of

the output values range from 0 to 255. Downloaded the program, we try to see the lights have

the corresponding change when change the photo resistor light intensity. In daily life

applications of photo resistor is very broad, usage is also a lot, we can do better interactive

work According to this experiment.

Application experiment with relay:
The relay is an automatic control device when input value reaches a certain value (electric,

magnetic, acoustic, optical, heat), output value will change. We often need to use the weak

control strong in life, that is often said that

High current to control the small current, like electrical power control the fan by using Arduino

controller we can use the relay,

For beginners, for safety reasons, in this experiment, we will not use electrical power, we are

here using LED lights to complete the demonstration experiment.

Components for use:

Relay module*1

jumper lines*1 lot

1, the new 5V relay module

2, can be used as the MCU development board module, can be used as a home appliance

control

3, the TTL control signal

4, control of DC or AC signal, can control the 220V AC load.

5, there is a normally open and a normally closed contact

6, the power indicator light

7, control lamp, attracting bright, disconnect not bright

8, transistor driver increases relay coil, control foot high impedance.

9, control foot has a pull-down circuit, to prevent false relay triggering.

Relay which belongs to the digital signal module, we control equipment through the relay

digital signal making relay on and off,

Here we use two LED lights as large power equipment, we use the Arduino controller of digital

interface 8, output

High level delay after 1 seconds, the output low level for 1 seconds, is switch off for a second

and then connected for a second.

Reference program：

int RelayPin =8; //Set pin8 to relay

void setup()

{

pinMode(RelayPin, OUTPUT); // Set output

}

void loop()

{

digitalWrite(RelayPin, HIGH); //relay ON

delay(1000); //wait 1 second

digitalWrite(RelayPin, LOW); //relay OFF

delay(1000); //wait 1 second

}

With relay module, we can control the 220V lamp as simple as controlling led. Upload the

program we can see our red and green lights flashing in turns.

Fire Alarm:

1. The flame sensor “PHOTOTRANSISTOR”

The flame sensor (i.e. the infrared receiver) is used to search for the heat source for robot. The sensor is

especially sensitive to the flame.

2. Working principle

Flame sensor utilize the feature that infrared is very sensitive to the flame, using flame receiving tube to detect

the flame, and then changes flame brightness into the signal level, input to the central processor, the central

processor to make programs according to the signal change.

3. The flame sensor connection

Short lead of the infrared receiving transistor is negative, long lead is positive. According to the chart below,

the emitter is connected to the 5V supply. The collector connected with 10K resistor and is also the point for

the output, the other side of the resistor connects to GND.

2. Fire alarm test

1. Experiment devices

flame sensor x1 “phototransistor”

buzzer x1

10K resistor x1

Colorful breadboard experimental Jumper: certain quantity

2. The experimental connection

1））））The connection of buzzer

Firstly, according to the Arduino curriculum connect control board, prototype board, bread board, download

cable. Take out the buzzer from the experiment box, according to the laboratory buzzer connecting method of

the second part. buzzer is connected to the digital 9 port. Complete the buzzer connection.

2））））The connection of flame sensor

Take out the flame sensor from the experimental box, according to the wiring method of flame sensor

described in this section, the flame sensor is connected to the analog A0 port. Complete the connection. The

buzzer is connected to 9 pin, flame sensor is connected to analog 0 pin.

3. The experiment principle

The two conditions when it is near the flames and is not near flames, voltage values read by analog port are

changing. Actually when you measure with a multimeter can get to know that when it is not near the flames

analog voltage value is about 0.3V, when it is near the flames analog voltage value is about 1.0V,the closer

the flames, analog voltage value is higher.

So in the start of this program, we can store an analog port voltage value i when there is no flame. Then keep

repeat reading analog port voltage value j, and different value k=j-i, K is compared with 0.6V. If different value

K is greater than 0.6V (Digital binary value is 123), when it is near fire, the buzzer will make sounds for

alarming; if the difference value is less than 0.6V, the buzzer does not ring.

Reference program：

int flame=0;//set sensor to A0

 int Beep=9;//set buzzer to pin 9

 int val=0;// Define digital variables

 void setup()

{

 pinMode(Beep,OUTPUT); //set output

 pinMode(flame,INPUT); //set input

 Serial.begin(9600); //set serial at baud rate 9600

 }

void loop()

{

 val=analogRead(flame); // Read the simulated value of the flame sensor

 Serial.println(val); //print serial value

 if(val>=600) // buzzer sounds when val is greater than 600

 {

 digitalWrite(Beep,HIGH);

 }else

 {

 digitalWrite(Beep,LOW);

 }

 delay(500);

}

The experimental result and phenomenon:

This program can simulate alarm when it is in a flame, when it is not and everything is normal, when there is

flame, alarm promptly.

LM35 Temperature Sensor:

LM35 is very common and easy temperature sensor element to be used, the components of

the application need only one LM35 element, only use an analog interface, the difficulty lies in

transit the algorithm analog value into the actual temperature.

Components for use:

LM35*1

Breadboard*1

Breadboard jumper lines*1 lot

Connect circuit according to the following diagram:

Reference program：

int potPin = 0; //set Port A0 for LM35

void setup()

{

Serial.begin(9600); //set serial baud rate 9600

}

void loop()

{

int val; //define veriable val

int dat; //define variable dat

val=analogRead(0); //read the analog value of the sensor and assign it to val

dat=(125*val)>>8; //temperature calculation formula for LM35

Serial.print("Tep:"); //print string “Tep: “

Serial.print(dat); //print value dat

Serial.println("°C"); // print string “ °C“ and next reading in new line

delay(500); //wait ½ second

}

After downloading the program to open a monitoring window can see the current temperature.

Digital Voltmeter Experiment:

Almost keep the same with last experiment, only the data after calculation.

Components for use:

Potentiometer*1

Breadboard*1

Breadboard jumper lines*1 lot

In this experiment, we will turn potentiometer resistance into analog values read out, and then

display on the screen. This is the example of the application that we are also required to

master when we need to complete our own experiment functions. We must first connect

physical projects according to the following diagram

We use analog interface A0.

Program is also very simple, and more explanation is on the statement before

Here Introduction is not much to say.

Reference program:

int potpin=0; //set pot to pin A0

int ledpin=13; //set LED pin 13

int val=0; // variable val will be defined and assigned an initial value of 0

int v; // variable v

void setup()

{

 pinMode(ledpin,OUTPUT); //set output

 Serial.begin(9600); //set serial baud rate 9600

}

void loop()

{

 digitalWrite(ledpin,HIGH); //set LED ON

 delay(50); //wait 0.05 of a second

 digitalWrite(ledpin,LOW); //set LED OFF

 delay(50); //wait 0.05 of a second

 val=analogRead(potpin); // read the value of analog interface 0 and assign it to val

v=map(val,0,1023,0,500); //Function Description map(x,Amin,Amax,Bmin,Bmax)

// set analog value of 0 to 1023 and adjust to 0 to 500 in other

words divide by 2.046.

Serial.println((float)v/100.00); //print vale v

}

Reference program uses Arduino digital 13 built-in LED lights, read a value each, lights will

flash.

Programming is in, open the serial port.

Below is the readout value simulation. And with the voltmeter to measure voltage of input port

A0. There are pictures.

The experiment here is done, when you rotate the potentiometer knob can see changes in the

numbers on the screen, according to the results, a voltmeter is quite accurate.

PS2 Joystick Nodule:

PS2 Joystick module generally can be used to control car and so on, its main structure is two

10K potentiometer and a key switch. Five ports are respectively VCC, X, Button, Y, GND.

Schematic wiring:

Reference program:

#include <LiquidCrystal.h> // Call the LiquidCrystal

LiquidCrystal lcd(12, 11, 10, 9, 8, 7); // Setting up the wiring

int xpotPin = 0; //set pot X-axis to pin A0

int ypotPin = 1; //set pot Y-axis to pin A1

int xval=0; //set veriable X

int yval=0; //set veriable Y

void setup()

{

 pinMode(xpotPin,INPUT); //set output X

 pinMode(ypotPin,INPUT); // set output Y

 lcd.begin(16, 2); // initialize LCD 16 character by 2 lines

 delay(1000); //wait 1 second

}

void loop ()

{

 xval = analogRead(xpotPin); //read X value

 yval = analogRead(ypotPin); // read Y value

 lcd.clear(); // Clear screen

 lcd.setCursor(0, 0) ; // Set cursor position to the first position on the first line

 lcd.print("X="); // string print to screen X=

 lcd.print(xval); // print X value

 lcd.setCursor(7, 0) ; // Set cursor position to the 8th position of the first line

 lcd.print("Y="); // string print to screen Y=

 lcd.print(yval); // print X value

 delay(100); // wait 0.1 of a second

}

Results: push the Joystick, the resistance value of the potentiometer is changed, the

corresponding voltage will change. The digital on LCD screen is a voltage digital output of

each shaft.

Here is the test result map:

Liquid Crystal Display:

This test uses arduino to directly drive 1602 LCD text

The 1602 liquid crystal is very extensive in the application, the 1602 liquid crystal used originally

is the HD44780 controller, now the 1602 module of each manufacturer basically adopts the

compatible IC, so the characteristic is basically the same.

1602LCD main technical parameters

The display capacity is 16×2 characters;

The chip operating voltage is 4.5 ~ 5.5V;

Operating current is 2.0mA (5.0V);

The best working voltage of the module is 5.0V;

The character size is 2.95 x 4.35 (W x H) mm.

1602 LCD Interface Pin Definitions

Pin

N°
Symbol Level Description Arduino Pin

generally

not used

1 Vss 0V Ground +5V

2 Vdd +5.0V Supply Voltage GND

3 VO variable Adjustable for contrast resistor

4 RS H/L H: Data / L: Instruction code 12

5 R/W H/L H: Read / L: Write GND X

6 E H,H>L Enable signal 11

7 DB0 H/L Data bus line X X

8 DB1 H/L Data bus line X X

9 DB2 H/L Data bus line X X

10 DB3 H/L Data bus line X X

11 DB4 H/L Data bus line D5

12 DB5 H/L Data bus line D4

13 DB6 H/L Data bus line D3

14 DB7 H/L Data bus line D2

15 BLA +5.0V Anode of LED backlight +5V

16 BLK 0V Cathode of LED backlight GND

Interface Description:

1. Two sets of power supply One set is the power supply of the module One set is the

power supply of the backlight board Normally all use 5V power supply. The test

backlight can also work with 3.3V power supply.

2. V0 is the pin to adjust the contrast, and the potentiometer with no more than 10KΩ pot

is used for adjustment and set the contrast.

3. RS is a pin on many LCDs. It is a command/data selection pin. When the pin is high,

data operation is performed; when it is low, command operation is performed.

4. RW is a read/write selection terminal. The pin level is high to indicate that the LCD is

to be read; when it is low, it indicates that a write operation is to be performed.

Generally not used and tied to GND.

5. E. Enable after the signal on the bus is stable, the data is read by a positive pulse.

When the pin is high, the bus is not allowed to change.

6. D0-D7 8-bit bidirectional parallel bus used to transmit commands and data.

7. BLA is the positive supply for the backlight, and BLK is the negative supply for the

backlight.

In normal use, the 8-bit connection basically fills up the Arduino's digital port. If you want to

connect several sensors without a port, how can you handle it? We can use 4-bit connection.

1602 directly communicates with arduino, according to the product manual described, divided

into 8-bit connection method and 4-bit connection method, we first use 8-bit connection

method for experiments. Hardware connection as shown below

Reference program: 1

// http://www.arduino.cc/en/Tutorial/LiquidCrystal

 #include <LiquidCrystal.h> // include the library

// initialize the library with the numbers of the interface pins

LiquidCrystal lcd(12, 11, 5, 4, 3, 2); // (RS, E, D4, D5, D6, D7)

void setup() {

 lcd.begin(16, 2); // set up the LCD's number of columns and rows:

 lcd.print("hello, world!"); // Print a message to the LCD.

}

void loop() {

 lcd.setCursor(0, 1); // set the cursor to column 0, line 1

 // (note: line 1 is the second row, since counting

begins with 0):

 lcd.print(millis() / 1000); // print the number every seconds since reset:

}

Another 4 Bit Connection

Bit connection hardware connection method as shown below

With a different approach to the sketch will also change to the layout.

After the hardware is connected, upload the following code to the control board to see the effect.

Reference program: 2

int LCD1602_RS=12; //set RS pin

int LCD1602_RW=11; //set R/W pin

int LCD1602_EN=10; //set Enable pin

int DB[] = { 6, 7, 8, 9}; //set data pins

char str1[]="Welcome to"; //set word to print

char str2[]="My LCD"; //set word to print

char str3[]="using "; //set word to print

char str4[]="4-bit interface"; //set word to print

void LCD_Command_Write(int command)

{

int i,temp;

digitalWrite(LCD1602_RS,LOW);

digitalWrite(LCD1602_RW,LOW);

digitalWrite(LCD1602_EN,LOW);

temp=command & 0xf0;

for (i=DB[0]; i <= 9; i++)

{

 digitalWrite(i,temp & 0x80);

 temp <<= 1;

}

digitalWrite(LCD1602_EN,HIGH);

delayMicroseconds(1);

digitalWrite(LCD1602_EN,LOW);

temp=(command & 0x0f)<<4;

for (i=DB[0]; i <= 10; i++)

{

 digitalWrite(i,temp & 0x80);

 temp <<= 1;

}

digitalWrite(LCD1602_EN,HIGH);

delayMicroseconds(1);

digitalWrite(LCD1602_EN,LOW);

}

void LCD_Data_Write(int dat)

{

int i=0,temp;

digitalWrite(LCD1602_RS,HIGH);

digitalWrite(LCD1602_RW,LOW);

digitalWrite(LCD1602_EN,LOW);

temp=dat & 0xf0;

for (i=DB[0]; i <= 9; i++)

{

 digitalWrite(i,temp & 0x80);

 temp <<= 1;

}

digitalWrite(LCD1602_EN,HIGH);

delayMicroseconds(1);

digitalWrite(LCD1602_EN,LOW);

temp=(dat & 0x0f)<<4;

for (i=DB[0]; i <= 10; i++)

{

 digitalWrite(i,temp & 0x80);

 temp <<= 1;

}

digitalWrite(LCD1602_EN,HIGH);

delayMicroseconds(1);

digitalWrite(LCD1602_EN,LOW);

}

void LCD_SET_XY(int x, int y)

{

 int address;

 if (y ==0) address = 0x80 + x;

 else address = 0xC0 + x;

 LCD_Command_Write(address);

}

void LCD_Write_Char(int x,int y,int dat)

{

 LCD_SET_XY(x, y);

 LCD_Data_Write(dat);

}

void LCD_Write_String(int X,int Y,char *s)

{

 LCD_SET_XY(X, Y); // Setting address

 while (*s) // Write a string

 {

 LCD_Data_Write(*s);

 s ++;

 }

}

void setup (void)

{

 int i = 0;

 for (i=6; i <= 12; i++)

 {

 pinMode(i,OUTPUT);

 }

 delay(100);

 LCD_Command_Write(0x28); //4 Line 2 Line 5x7

 delay(50);

 LCD_Command_Write(0x06);

 delay(50);

 LCD_Command_Write(0x0c);

 delay(50);

 LCD_Command_Write(0x80);

 delay(50);

 LCD_Command_Write(0x01);

 delay(50);

}

void loop (void)

{

 LCD_Command_Write(0x01);

 delay(50);

 LCD_Write_String(3,0,str1);// Line 1, from the 4th address

 delay(50);

 LCD_Write_String(1,1,str2);// Line 2, from the second address

 delay(5000);

 LCD_Command_Write(0x01);

 delay(50);

 LCD_Write_String(0,0,str3);

 delay(50);

 LCD_Write_String(0,1,str4);

 delay(5000);

 }

Servo Motor Control:

The servo is a kind of positioning driver mainly used by the RC hobby enthusiasts. Its working

principle is to steering gear from the receiver or signal the microcontroller, the interior has a

reference circuit, the cycle is 20ms, the width of the reference signal 1.5ms, compares the

voltage of DC bias voltage was obtained with potentiometer, voltage difference output.

Through the circuit board IC judge the direction of rotation, and then drives the non core motor

starts to rotate, the power is transmitted to the swing arm through the reduction gear, at the

same time by the position detector to signal, whether we've reached the positioning. Applies to

those control systems need to angle changing. When the motor speed must, through the

reduction gear drive cascading rotary potentiometers, the voltage difference is 0, the motor

stops rotating. The rotation angle range of steering gear is 0 degrees to 180 degrees.

The servo has many specifications, but all of the actuator is connected respectively with three

lines, brown, red, orange three colors to distinguish, as the servo with different brand, color will

vary, brown for the ground line, red for the positive power supply line, orange for the signal line.

The rotation angle is regulated by PWM (pulse width modulation) signal duty cycle to achieve

the standard, PWM (pulse width modulation) signal cycle is fixed at 20ms (50Hz), pulse width

distribution theory should be between 1ms to 2ms, but, in fact the pulse width is from 0.5ms to

2.5ms, angular width and the 0 ° ~ 180 ° should be relatively. It is noteworthy places, because

the brand is different, for the same signal, different brands of steering gear rotation angle will

be different.

To understand the basic knowledge we can learn to control a servo, need the components

need only a few actuator, one jumper is ok.

RB—412 servo*1

Breadboard jumper lines*1 lot

Method of using Arduino to control the servo has two kinds, one is the duty ratio of different

square wave by ordinary digital sensor interface Arduino, simulate a PWM signal to position

the servo, the second is to control the servo by directly using Servo library on Arduino, the

advantage of this kind of control method is the programming, but it can only control 1 small

servo because Arduino own 5V regulation is rated at 350mA. Also only the ports marked with

an (~) sing can only be used as PWM outputs. The power supply ability of the Arduino is

limited, so when the need control more than 1 servo, use an external power supply.

Method 1:

The servo is connected to the with interface using digital pin 9.

Write a program to let the servo rotate to the position corresponding to the angle number that

user input, and will be printed to the screen angle.

Reference program A:

int servopin=9; //set servo

int myangle; //variable for the angle

int pulsewidth; //variable for the pulse width

int val;

void servopulse(int servopin,int myangle)

{

pulsewidth=(myangle*11)+500; // control the angle to a pulse width of 500-2480

digitalWrite(servopin,HIGH); // set the servo interface level to high

delayMicroseconds(pulsewidth); // microseconds delayed, pulse width

digitalWrite(servopin,LOW); //set the servo interface level to low

delay(20-pulsewidth/1000);

}

void setup()

{

pinMode(servopin,OUTPUT); //set output

Serial.begin(9600); //set serial baud rate 9600

Serial.println("servo=o_seral_simple ready") ;

}

// Convert a number from 0 to 9 to a 0 to 180 angle and let the LED blink a corresponding

number of times

void loop()

{

val=Serial.read(); //read the value of the serial port

if(val>'0'&&val<='9')

{

val=val-'0'; //convert feature quantities to numeric variables

val=val*(180/9); //turn numbers into angles

Serial.print("moving servo to ");

Serial.print(val,DEC);

Serial.println();

for(int i=0;i<=50;i++) //give the servo enough time to turn it to a specified angle

{

servopulse(servopin,val); // reference pulse function

}

}

}

Method B:

The first a explanation of the Servo function with the Arduino, to introduce several commonly

used statements about servo function.

1.attach（interface）——Set the interface, only the number 9 or 10 interface can use.

2. write（angle）——the statement used to set the servo rotation angle of, angle range can be

set is 0 ° to 180 °.

3. read（）——The servo is used to read the statement, can be understood as the last value of

order write ().

4. attached（）——Judge whether the servo parameters are sent to the actuator's interface.

5. detach（）—— Split the servo and its interface, the interface (the number 9 or 10 interface)

may continue to be used as PWM interface.

Note: the above statement’s writing format is the "servo variable name. specific statement

().For example, myservo.attach(9) is still connected to the number 9 interface.

Reference program B:

#include <Servo.h> //add library

Servo myservo; //variable name

void setup()

{

myservo.attach(9); //set as output on pin 9

}

void loop()

{

myservo.write(90); // Set the servo rotation angle

}

The above two methods is to control the servo, the advantages and disadvantages for each

people according to their own preferences and the need to choose.

Stepper Motor:

Stepper motor is an implementing agency transforms the electricity pulse as the angular

displacement. Generally speaking when stepper driver receive a pulse signal, it drives stepper

motor rotates a fixed angle in the direction already set (so called the stepper angle). You can

control the number of pulses to control the amount of angular displacement, so as to achieve

the purpose of accurate positioning; you also can control the pulse frequency to control motor

rotation speed and acceleration, so as to achieve the purpose of adapting speed.

The following is the stepper motor used in experiment

Before the use of stepper motor must carefully check the specification, confirm is the four

phase or two-phase, each line to connect, in this experiment, the stepping motor is four phase

(min of 5 wires), different color lines are defined as below:

Specification: stepper motor

Diameter: 28mm

Voltage: 5V

Stepping angle: 5.625 x 1/64

Speed down ratio: 1/64

The 5 wire 4 phase can use ordinary ULN2003 chip driver, also can be connected 2 phase

The stepping motor no-load power consumption below 50mA, with 64 times the speed reducer,

the output torque is large, can drive heavy load, very suitable for the development board to use.

Note: This stepper motor with 64 times the speed reducer, and not with the reducer of the

stepper motor speed is slower, compared, for convenient observation, can be stuck with a

piece of cardboard in the output shaft.

Stepper motor (five wire four phase) driver board (UL2003) test plate

Stepper motor driver board (UL2003) test module

Size：31×35mm

Hardware connection

Reference program：

/*

* Stepper motor follows potentiometer rotation

* (or other sensors) use analog port 0 input

* Use the Stepper.h library file that comes with the arduino IDE

*/

#include <Stepper.h>

#define STEPS 100 // Here is how many steps the stepper motor rotates for 1 revelation

Stepper stepper(STEPS, 8, 9, 10, 11); //attached to set stepper motor pins

int previous = 0; // defining variables

void setup()

{

 stepper.setSpeed(90); // set the motor speed to 90 steps per minute

 }

 void loop()

 {

 int val = analogRead(0); // read analog pot value

 stepper.step(val - previous); // The steps to moves is the current reading minus historical readings

 previous = val; // Save previous readings

 }

Experimental results: The stepper motor rotates slowly.

7 Segment x1 Display:

Numeric display is a common universal display device for displaying numeric, in daily life, for example: the

electromagnetic oven, full automatic washing machine, solar energy water temperature display, electronic

clock...It is necessary to master the numeric display display principle.

Numeric display is a semiconductor light emitting device (LED). Numeric display according to the section is

divided into seven segment numeric display with a decimal point, used in this experiment is seven segment

numeric display. According to the light emitting diode unit connection mode is divided into common anode

numeric display and Common cathode Numeric display.

Common anode numeric display refers to all the anodes of light emitting diode are connected together forms

common (COM) numeric display. Common anode numeric display with the anode should connect public pole

COM to +5V in the application. When the cathode of a field of light emitting diode is in low electric level, the

corresponding field will light up. When the cathode of a field is in high level, the corresponding field is not bright.

Common cathode numeric display refers to all the cathodes of light emitting diode are connected together forms

common (COM) numeric display. Common anode Numeric display with the anode should connect public pole

COM to the ground GND in the application. When the anode of a field of light emitting diode is low, the

corresponding field will light. When the anode of a field is in high level, the corresponding field is not light.

Each segment of LED display is composed of an emitting diode, so when using the light emitting diode, also

need to connect a current limiting resistor, otherwise the current may exceed the maximum forward current of

the light emitting diode and burnout. This experiment use the common cathode LED display, common cathode

LED display in the application should be public pole connected to the GND, when the anode of a field of emitting

light diode is in low electric level, the corresponding field on the point of extinction. When the anode of a

segment of light emitting diode is low, the corresponding segment will not light. When the anode of a segment is

in high level, the corresponding segment will light.

The experiment components for use

The seven segment numeric display*1

220ΩLamp resistor*8

Breadboard*1 Breadboard jumper lines*1 lot

Connection diagram to connect the circuit below.

A total of seven segment numeric display with a decimal point. When the numeric display displays numeric, as

long as light the corresponding segment can be light this experiment is done. For example, let the numeric

display display the number 1, then B, C segment can be light. Displays each number as in a subroutine. The

main program updates every 1 sec. Adjust the int delay_set to 100. The display will run through the number

every 0.1 of a second. Each segment display time is determined by the delay period, for longer delay in time

adjust the delay period accordantly. For shorter delay visa versa.

Reference program:

int a=7; //set seg. a to pin 7

int b=6; // set seg. b to pin 6

int c=5; // set seg. c to pin 5

int d=10; // set seg. d to pin 10

int e=11; // set seg. e to pin 11

int f=8; // set seg. f to pin 8

int g=9; // set seg. g to pin 9

int dp=4; // set seg. dp to pin 4

int delay_set=1000; // main delay time

void digital_0(void) //Call for the number (0)

 {

unsigned char j;

digitalWrite(a,HIGH); //a = ON

digitalWrite(b,HIGH); //b = ON

digitalWrite(c,HIGH); //c = ON

digitalWrite(d,HIGH); //d = ON

digitalWrite(e,HIGH); //e = ON

digitalWrite(f,HIGH); //f = ON

digitalWrite(g,LOW); //g = OFF

digitalWrite(dp,LOW); //dp OFF

}

void digital_1(void) //Call for the number (1)

{

unsigned char j;

digitalWrite(c,HIGH); //c = ON

digitalWrite(b,HIGH); //b = ON

for(j=7;j<=11;j++) // remaining segments OFF

digitalWrite(j,LOW);

digitalWrite(dp,LOW); //dp OFF

}

void digital_2(void) //Call for the number (2)

{

unsigned char j;

digitalWrite(b,HIGH); //b = ON

digitalWrite(a,HIGH); //a = ON

for(j=9;j<=11;j++)

digitalWrite(j,HIGH); //j = ON

digitalWrite(dp,LOW); //dp OFF

digitalWrite(c,LOW); //c = OFF

digitalWrite(f,LOW); //f = OFF

}

void digital_3(void) //Call for the number (3)

{

digitalWrite(g,HIGH); //g = ON

digitalWrite(a,HIGH); //a = ON

digitalWrite(b,HIGH); //b = ON

digitalWrite(c,HIGH); //c = ON

digitalWrite(d,HIGH); //d = ON

digitalWrite(dp,LOW); //dp OFF

digitalWrite(f,LOW); //f = OFF

digitalWrite(e,LOW); //e = OFF

}

void digital_4(void) //Call for the number (4)

{

digitalWrite(c,HIGH); //c = ON

digitalWrite(b,HIGH); //b = ON

digitalWrite(f,HIGH); //f = ON

digitalWrite(g,HIGH); //g = ON

digitalWrite(dp,LOW); //dp OFF

digitalWrite(a,LOW); //a OFF

digitalWrite(e,LOW); //e OFF

digitalWrite(d,LOW); //d OFF

}

void digital_5(void) //Call for the number (5)

{

unsigned char j;

digitalWrite(a,HIGH); //a = ON

digitalWrite(b, LOW); //b OFF

digitalWrite(c,HIGH); //c = ON

digitalWrite(d,HIGH); //d = ON

digitalWrite(e, LOW); //e OFF

digitalWrite(f,HIGH); //f = ON

digitalWrite(g,HIGH); //g = ON

digitalWrite(dp,LOW); //dp OFF

}

void digital_6(void) //Call for the number (6)

{

unsigned char j;

for(j=7;j<=11;j++)

digitalWrite(j,HIGH); //j = ON

digitalWrite(c,HIGH); //c = ON

digitalWrite(dp,LOW); //dp OFF

digitalWrite(b,LOW); //b OFF

}

void digital_7(void) //Call for the number (7)

{

unsigned char j;

for(j=5;j<=7;j++)

digitalWrite(j,HIGH); //j = ON

digitalWrite(dp,LOW); //dp OFF

for(j=8;j<=11;j++)

digitalWrite(j,LOW); //j OFF

}

void digital_8(void) //Call for the number (8)

{

unsigned char j;

for(j=5;j<=11;j++)

digitalWrite(j,HIGH); //j = ON

digitalWrite(dp,LOW); //dp OFF

}

void digital_9(void) //Call for the number (9)

{

unsigned char j;

digitalWrite(a,HIGH); //a = ON

digitalWrite(b,HIGH); //b = ON

digitalWrite(c,HIGH); //c = ON

digitalWrite(d,HIGH); //d = ON

digitalWrite(e, LOW); //e OFF

digitalWrite(f,HIGH); //f = ON

digitalWrite(g,HIGH); //g = ON

digitalWrite(dp,LOW); //dp OFF

}

void setup()

{

int i; //define variable

for(i=4;i<=11;i++)

pinMode(i,OUTPUT); // set 4 to 11 pins for output

}

void loop()

{

while(1)

{

digital_0(); //Display number 0

delay(delay_set); //wait delay set time

digital_1(); //Display number 1

delay(delay_set); //wait delay set time

digital_2(); //Display number 2

delay(delay_set); //wait delay set time

digital_3(); //Display number 3

delay(delay_set); //wait delay set time

digital_4(); //Display number 4

delay(delay_set); //wait delay set time

digital_5(); //Display number 5

delay(delay_set); //wait delay set time

digital_6(); //Display number 6

delay(delay_set); //wait delay set time

digital_7(); //Display number 7

delay(delay_set); //wait delay set time

digital_8(); //Display number 8

delay(delay_set); //wait delay set time

digital_9(); //Display number 9

delay(delay_set); //wait delay set time

}

}

Experiment phenomenon ：digital display display circularly 0 to 9 digital

7 Segment x4 Display:

We conduct experiment using the Arduino to drive a common cathode four numeric display. Driver numeric display

current limiting resistor is absolutely indispensable, a current limiting resistor of two kinds of connection, one is

connecting in the D1-D4 anode, a total of 4. This method needs less resistance, but will produce different numeric

brightness on each display bit, the 1 is the brightest, the darkest 8. Another method is connecting with other 8 pins, the

brightness of this connection is even, but with more resistance. In this experiment use 8 220Ω resistors (because there

is no 100 Ω resistor, so use 220Ω ohm instead and 100 ohm brightness is high).

4 numeric displays has a total of 12 pins, decimal point is down on the front, the lower left corner for 1, other pins to

rotate in counterclockwise order. The upper left corner is the largest 12 pin.

The numeric display manual

Below is the hardware connection diagram

Reference program:

 int a = 1; //set up the cathode interface

 int b = 2;

 int c = 3;

 int d = 4;

 int e = 5;

 int f = 6;

 int g = 7;

 int dp = 8;

 int d4 = 9; //set up the anode interface

 int d3 = 10;

 int d2 = 11;

 int d1 = 12;

 long n = 1230; //set the variable

 int x = 100;

 int del = 55; //Here the value of the clock to fine-tune

 void setup() {

 pinMode(d1, OUTPUT);

 pinMode(d2, OUTPUT);

 pinMode(d3, OUTPUT);

 pinMode(d4, OUTPUT);

 pinMode(a, OUTPUT);

 pinMode(b, OUTPUT);

 pinMode(c, OUTPUT);

 pinMode(d, OUTPUT);

 pinMode(e, OUTPUT);

 pinMode(f, OUTPUT);

 pinMode(g, OUTPUT);

 pinMode(dp, OUTPUT);

 }

void loop() {

 Display(1, 1);

 Display(2, 2);

 Display(3, 3);

 Display(4, 4);

}

void WeiXuan(unsigned char n) {

 switch(n)

 {

 case 1:

 digitalWrite(d1,LOW);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, HIGH);

 break;

 case 2:

 digitalWrite(d1, HIGH);

 digitalWrite(d2, LOW);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, HIGH);

 break;

 case 3:

 digitalWrite(d1,HIGH);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, LOW);

 digitalWrite(d4, HIGH);

 break;

 case 4:

 digitalWrite(d1, HIGH);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, LOW);

 break;

 default :

 digitalWrite(d1, HIGH);

 digitalWrite(d2, HIGH);

 digitalWrite(d3, HIGH);

 digitalWrite(d4, HIGH);

 break;

 }

}

void Num_0() {

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, HIGH);

 digitalWrite(g, LOW);

 digitalWrite(dp, LOW);

}

void Num_1() {

 digitalWrite(a, LOW);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, LOW);

 digitalWrite(dp, LOW);

}

void Num_2() {

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, LOW);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, LOW);

 digitalWrite(g, HIGH);

 digitalWrite(dp, LOW);

}

void Num_3() {

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, HIGH);

 digitalWrite(dp, LOW);

}

void Num_4() {

 digitalWrite(a, LOW);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp, LOW);

}

void Num_5() {

 digitalWrite(a, HIGH);

 digitalWrite(b, LOW);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, LOW);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp, LOW);

}

void Num_6() {

 digitalWrite(a, HIGH);

 digitalWrite(b, LOW);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp, LOW);

}

void Num_7() {

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, LOW);

 digitalWrite(dp, LOW);

}

void Num_8() {

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, HIGH);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp, LOW);

}

void Num_9() {

 digitalWrite(a, HIGH);

 digitalWrite(b, HIGH);

 digitalWrite(c, HIGH);

 digitalWrite(d, HIGH);

 digitalWrite(e, LOW);

 digitalWrite(f, HIGH);

 digitalWrite(g, HIGH);

 digitalWrite(dp, LOW);

}

void Clear() { //clear screen

 digitalWrite(a, LOW);

 digitalWrite(b, LOW);

 digitalWrite(c, LOW);

 digitalWrite(d, LOW);

 digitalWrite(e, LOW);

 digitalWrite(f, LOW);

 digitalWrite(g, LOW);

 digitalWrite(dp,LOW);

}

void pickNumber(unsigned char n) { //selection

 switch(n)

 {

 case 0:Num_0();

 break;

 case 1:Num_1();

 break;

 case 2:Num_2();

 break;

 case 3:Num_3();

 break;

 case 4:Num_4();

 break;

 case 5:Num_5();

 break;

 case 6:Num_6();

 break;

 case 7:Num_7();

 break;

 case 8:Num_8();

 break;

 case 9:Num_9();

 break;

 default:Clear();

 break;

 }

}

void Display(unsigned char x, unsigned char Number) { //Display x as coordinates of Number as a digit

 WeiXuan(x);

 pickNumber(Number);

 delay(1);

 Clear() ; //clear screen

}

Upload the following code to the control board, have a look at effect chart.

The experiment result is displaying 1234 on numeric display.

Note: you need to be patient, careful, do not connect the wrong wires, when not display correctly, first check the wiring.

Infrared Remote Control :

Note：：：：Download the IRremote zip file from https://github.com/z3t0/Arduino-IRremote/releases and see

2.1.0 - Stable Release and download Arduino-IRremote-dev.zip and place it in a new folder under

C:\......\Arduino\libraries\New. Open the Arduino IDE and open the tabs Sketch\Include Library and click on

Add.ZIP Library. Locate the zip file and click on it.

Open tabs Sketch\Include Library, check down the list to see if installed.

NB: If not installed the compiler will not complete and the upload will fail.

1. The infrared receiving head

Infrared remote controller sends signal is a series of binary pulse code. In order to interference from the other

infrared signal in the wireless transmission process, usually the first of its modulation on the specified carrier

frequency, and then by the infrared emission diode launch out, and the infrared receiving device to filtering the clutter

signal and receives the specified frequency and restore it to the binary pulse code that is demodulated.

Working principal

The optical signals emitted by the built-in infrared receiving tube are converted to weak signals, the signal is

amplified through the IC internal amplifier, and then through the automatic gain control, bandpass filtering,

demodulation, waveform shaping transits into the original code emitted by remote controller, input the code into code

recognition circuit on electric devices via the signal output pin of the receiving head.

The pin and the connection of the infrared receiving

head

When Connect the VOUT to analog port, GND connects

to the GND on experimental panel, VCC connects to

the +5v on the experimental panel.

The infrared receiving head has 3 pins.

2. Infrared remote control experiment

1. Experiment devices

Infrared remote controller x1

 Infrared receiver head x1

 LED light x6

 220Ωresistor x6

 Multi color breadboard lines x a certain quantity.

2. Experiment connection

The board is connected; then, the infrared receiving head is connected in accordance with the above method, the

VOUT connects the digital 11 port pins, the LED lamp through the resistor connects to the digital pin 2, 3, 4, 5, 6, 7.

Complete the part of circuit connection.

3. The experimental principle

To decode a remote controller must know the remote controller encoded mode. Encoded mode this product uses is:

NEC protocol. Here's a look at the NEC protocol:

·NEC protocol:

Feature：

(1) 8 bit address bits, 8 bit command bit

(2) In order to reliability address bits and command bits transmitted two times

(3) Pulse position modulation

(4) The carrier frequency 38kHz

(5) The time of each bit is 1.125ms or 2.25ms

A logical 0 and 1 is defined as below

Protocol is as follows ：

• The pulse for pressing key and release immediately:

The picture above shows the typical pulse sequence of NEC protocol. Note: this first sends LSB (lowest) protocol.

On the top of that pulse transmission address is the 0x59, command is 0x16. A message start from a high level of a

9ms, followed by a low level of a 4.5ms (return two segment level forms guidance code) followed by the address

code and order code. The address and command transfer for two times. The second time all bits are inverted, which

can be used to confirm the received message. The total transmission time is constant, because every point is

repeatable with inverted length. If you're not interested, you can ignore the reliability of inversion, can expand the

address and command, to each of the 16 bits!

The transmitted pulse for button is pressed a period of time and then release:

Sending a command at a time and pressing the buttons on the remote control all the time. When the button is

pressed, the first 110ms's pulse is as above, repeat code transmission for one time in every 110ms. Return a

repetition code is composed of a 9ms high level pulse and a low level of 2.25ms and a 560 µs high level.

·Repetition pulse

Note: after the pulse waveform is integrated into the

receiving head, it is decoding, signal amplifying and

shaping in the integrated receiver head, therefore,

should pay attention to: in the absence of infrared signal,

its output is high level and voce vice. The output signal

level is opposite to emission port. The receiving port

pulse we can see through the oscilloscope, so

understand the program with waveform.

Circuit diagram:

Reference program ：

#include <IRremote.h> // new library

int RECV_PIN = 11;

int LED1 = 2;

int LED2 = 3;

int LED3 = 4;

int LED4 = 5;

int LED5 = 6;

int LED6 = 7;

long on1 = 0x00FFA25D;

long off1 = 0x00FFE01F;

long on2 = 0x00FF629D;

long off2 = 0x00FFA857;

long on3 = 0x00FFE21D;

long off3 = 0x00FF906F;

long on4 = 0x00FF22DD;

long off4 = 0x00FF6897;

long on5 = 0x00FF02FD;

long off5 = 0x00FF9867;

long on6 = 0x00FFC23D;

long off6 = 0x00FFB047;

IRrecv irrecv(RECV_PIN);

decode_results results;

// Dumps out the decode_results structure.

// Call this after IRrecv::decode()

// void * to work around compiler issue

//void dump(void *v) {

// decode_results *results = (decode_results *)v

void dump(decode_results *results) {

 int count = results->rawlen;

 if (results->decode_type == UNKNOWN)

 {

 Serial.println("Could not decode message");

 }

 else

 {

 if (results->decode_type == NEC)

 {

 Serial.print("Decoded NEC: ");

 }

 else if (results->decode_type == SONY)

 {

 Serial.print("Decoded SONY: ");

 }

 else if (results->decode_type == RC5)

 {

 Serial.print("Decoded RC5: ");

 }

 else if (results->decode_type == RC6)

 {

 Serial.print("Decoded RC6: ");

 }

 Serial.print(results->value, HEX);

 Serial.print(" (");

 Serial.print(results->bits, DEC);

 Serial.println(" bits)");

 }

 Serial.print("Raw (");

 Serial.print(count, DEC);

 Serial.print("): ");

 for (int i = 0; i < count; i++)

 {

 if ((i % 2) == 1) {

 Serial.print(results->rawbuf[i]*USECPERTICK, DEC);

 }

 else

 {

 Serial.print(-(int)results->rawbuf[i]*USECPERTICK, DEC);

 }

 Serial.print(" ");

 }

 Serial.println("");

 }

void setup()

 {

 pinMode(RECV_PIN, INPUT);

 pinMode(LED1, OUTPUT);

 pinMode(LED2, OUTPUT);

 pinMode(LED3, OUTPUT);

 pinMode(LED4, OUTPUT);

 pinMode(LED5, OUTPUT);

 pinMode(LED6, OUTPUT);

 pinMode(13, OUTPUT);

 Serial.begin(9600);

 irrecv.enableIRIn(); // Start the receiver

 }

int on = 0;

unsigned long last = millis();

void loop()

{

 if (irrecv.decode(&results))

 {

 // If it's been at least 1/4 second since the last

 // IR received, toggle the relay

 if (millis() - last > 250)

 {

 on = !on;

// digitalWrite(8, on ? HIGH : LOW);

 digitalWrite(13, on ? HIGH : LOW);

 dump(&results);

 }

 if (results.value == on1)

 digitalWrite(LED1, HIGH);

 if (results.value == off1)

 digitalWrite(LED1, LOW);

 if (results.value == on2)

 digitalWrite(LED2, HIGH);

 if (results.value == off2)

 digitalWrite(LED2, LOW);

 if (results.value == on3)

 digitalWrite(LED3, HIGH);

 if (results.value == off3)

 digitalWrite(LED3, LOW);

 if (results.value == on4)

 digitalWrite(LED4, HIGH);

 if (results.value == off4)

 digitalWrite(LED4, LOW);

 if (results.value == on5)

 digitalWrite(LED5, HIGH);

 if (results.value == off5)

 digitalWrite(LED5, LOW);

 if (results.value == on6)

 digitalWrite(LED6, HIGH);

 if (results.value == off6)

 digitalWrite(LED6, LOW);

 last = millis();

 irrecv.resume(); // Receive the next value

 }

}

Program function:

Decoding code pulse emitted by the remote controller, implement appropriate action according to the results of

decoding. In this way you can control your device with a remote control, let it receives your command.

screenshot

	000-KT0004-KIT_KEYES.pdf
	Microsoft Word - 001-LED Project 2 LED flash experiment.doc_1.pdf
	Microsoft Word - 002-LED Flow water light experiments.doc_1.pdf
	Microsoft Word - 003- LED Traffic light design experiment.doc_1.pdf
	Microsoft Word - 004-LED Key control LED experiment.doc_1.pdf
	Microsoft Word - 005-LED Tilt switch experiment.doc_1.pdf
	Microsoft Word - 006-LED Responder experimental design.doc_1.pdf
	Microsoft Word - 007-LED 3W LED RGB module.doc_1.pdf
	Microsoft Word - 008-LED 74HC595 experimen.doc_1.pdf
	Microsoft Word - 009-POT Analog value read experiment.doc_1.pdf
	Microsoft Word - 010-LED PWM regulates the brightness of the light experiment.doc_1.pdf
	Microsoft Word - 011-buzzer sounding experiment.doc_1.pdf
	Microsoft Word - 012-LDR Optical sound experiments.doc_1.pdf
	Microsoft Word - 013-LDR Photosensitive lamp experiment.doc_1.pdf
	Microsoft Word - 014-Relay Application experiment.doc_1.pdf
	Microsoft Word - 015-Fire alarm test.doc_1.pdf
	Microsoft Word - 016-LM35 temperature sensor experiment.doc_1.pdf
	Microsoft Word - 017-POT Digital voltmeter experiment.doc_1.pdf
	Microsoft Word - 018-PS2 Joystick module experiment.doc_1.pdf
	Microsoft Word - 019-LCD Arduino 1602 LCD Display.doc.pdf
	Microsoft Word - 020-Servo Project 16.Servo Motor Control.doc.pdf
	Microsoft Word - 021-Stepper 20.Stepper motor experiment.doc.pdf
	Microsoft Word - 022-1x 7Seg Digital tube display experiment.doc.pdf
	Microsoft Word - 023-4x 7Seg digital tube.doc.pdf
	Microsoft Word - 024-Infrared remote control .doc.pdf

