8K × 8 Bit EEPROM with Latches and Auto-Write FEATURES GENERAL

- Simple Byte Write
 - Fast Byte Write Time
 - Single TTL Level Write Signal
 - Latched Address and Data
 - Automatic Internal Erase-before-Write
 - Automatic Write Timing
 - DATA Polling and Verification
 - Ready/Busy Output Pin
- Enhanced Write Protection
- Single 5 volt Supply
- Byte Write: 10ms (max)—KM2865A 2ms (max)—KM2865AH
- Fast Access Time: 200ns
- Power: 50mA-Standby (max)
- 120mA—Operating (max)
- Two Line Control-Eliminates Bus Contention

FUNCTIONAL BLOCK DIAGRAM

- 10,000 Cycle Endurance
- JEDEC Byte-wide Memory Pinout

Buffers Latches 65,536 Bit and E²PROM Decoder Memory An-A12 Arrav v Buffers Latches and **I/O Buffers** Decoder and Latches I/O1-I/O8 ĈÊ Control Logic and ŌĒ Timing RDY/BSY WE

GENERAL DESCRIPTION

The KM2865A/AH is a 65,536 bit Electrically Erasable and Programmable Read-Only-Memory organized as 8,192 words by 8-bits. Its data can be modified using simple TTL level signals and a single 5 volt power supply.

Writing data into the KM2865A/AH is very simple. The internally self-timed write cycle latches both address and data to provide a free system bus during the write period which is 10ms (max) for the KM2865A or 2ms (max) for the KM2865AH.

The KM2865A/AH features two end of write detection schemes to provide maximum design flexibility while enhancing the system performance. DATA Polling is a software scheme to detect the early completion of a write cycle without using any additional hardware. Ready/Busy is a hardware scheme in which Pin 1 is used to signal the status of the write operation and is especially useful in interrupt driven systems.

The KM2865A/AH is fabricated with the well defined floating gate NMOS technology using Fowler-Nordheim tunneling for erasing and programming.

PIN CONFIGURATION

RDY/BSY 1	28 V _{CC}
A12 2	27 WE
A7 3	26) N.C.
A ₆ 4	25 A8
A ₅ 5	24) Ag
A4 6	23 A11
A3 7	22) OE
A ₂ 8	21 A ₁₀
A1 9	20 CE
A ₀ 10	19 I/O ₈
I/O ₁ -11	18 I/O7
1/O ₂ 12	17) I/O ₆
1/O3 [13	16 I/O5
V _{SS} [14]	15 I/O4

Pin Name	Pin Function
A ₀ -A ₁₂	Address Inputs
I/O1-I/O8	Data Inputs/Outputs
ĈĒ	Chip Enable
ŌE	Output Enable
WE	Write Enable
RDY/BSY	Ready/Busy Output
N.C.	No Connection
V _{cc}	Power (+5V)
V _{ss}	Ground

ABSOLUTE MAXIMUM RATINGS*

Parameter	Parameter Symbol		Units	
Voltage on any pin relative to V _{SS}	V _{IN}	-1 to +6.0	v	
Temperature Under Bias	T _{bias}	- 40 to + 85	°C	
Storage Temperature	T _{stg}	- 65 to + 125	°C	
Short Circuit Output Current	los	5	mA	

*NOTE: Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

(Voltages referenced to V_{SS} , $T_A = 0$ to 70°C)

Parameter	Symbol	Min	Тур	Мах	Unit
Supply Voltage	V _{cc}	4.5	5.0	5.5	v
Ground	V _{ss}	0	0	0	v
Input High Voltage	VIH	2.0	_	V _{cc} + 0.3	v
Input Low Voltage	VIL	- 1	_	0.8	v

DC AND OPERATING CHARACTERISTICS

(Recommended operating conditions unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Max	Units
Operating Current	lcc	$\overline{CE} = \overline{OE} = V_{IL}$ All I/O's = OPEN Other Inputs = V _{CC}	_	120	mA
Standby Current	I _{SB}	CE = V _{IH} All I/O's = OPEN Other Inputs = V _{CC}	_	50	mA
Input Leakage Current	۱u	$V_{IN} = 0$ to 5.5V	-	10	μA
Output Leakage Current	ILO	$V_{OUT} = 0$ to 5.5V	-	10	μΑ
Output High Voltage Level	V _{OH}	I _{он} = - 400 µА	2.4	_	v
Output Low Voltage Level	Vol	I _{OL} = 2.1 mA	-	0.4	v
Write Inhibit V _{cc} Level	Vwi		3.5	_	v

CAPACITANCE ($T_A = 25^{\circ}C$, $V_{CC} = 5V$, f = 1.0 MHz)

Parameter	Symbol	Conditions	Min	Max	Unit
Input/Output Capacitance	C _{i/O}	V _{1/0} = 0V	-	10	pF
Input Capacitance	CIN	$V_{IN} = 0V$	—	6	pF

Note: Capacitance is periodically sampled and not 100% tested.

4

MODE SELECTION

ĈĒ	ŌĒ	WE	Mode	I/O	Power
L	L	н	Read	Dout	Active
L	н	L	Write	D _{iN}	Active
н	Х	Х	Standby and Write Inhibit	High-Z	Standby
X	L	Х	Write Inhibit		_
x	X	н	Write Inhibit	-	<u> </u>

AC CHARACTERISTICS

(T_A = 0°C to 70°C, V_{CC} = 5V ± 10%, unless otherwise noted.)

TEST CONDITIONS

Parameter	Value
Input Pulse Levels	0 to 3.0V
Input Rise and Fall Times	10 ns
Input and Output Timing Levels	1.5V
Output Load	1 TTL Gate and $C_L = 100 \text{ pF}$

READ CYCLE

Parameter	Symbol		65A-20 5AH-20	KM2865A-25 KM2865AH-25		KM2865A-30 KM2865AH-30		Unit
	-	Min	Max	Min	Max	Min	Max]
Read Cycle Time	t _{RC}	200		250		300		ns
Chip Enable Access Time	t _{CE}		200		250		300	ns
Address Access Time	t _{AA}		200		250		300	ns
Output Enable Access Time	toE		100		120		150	ns
Chip Enable to Output in Low-Z	t _{LZ}	10		10		10		ns
Chip Disable to Output in High-Z	t _{HZ}	10	100	10	100	10	100	ns
Output Enable to Output in Low-Z	touz	50		50		50		ns
Output Disable to Output in High-Z	t _{онz}	10	60	10	80	10	100	ns
Output Hold from Address Change	t _{он}	20		20		20		ns

WRITE CYCLE

Parameter		Symbol	Min	Max	Units		
	KM2865A		10				
Write Cycle Time	KM2865AH	t _{wc}	2	-	ms		
Address Set-up Time		t _{AS}	10		ns		
Address Hold Time		t _{AH}	120		ns		
Write Set-up Time		t _{cs}	0		ns		
Write Hold Time		t _{сн}	0		ns		
Chip Enable to End of Write Input		hip Enable to End of Write Input		t _{cw}	150		ns
Output Enable Set-up Time		toes	10		ns		
Output Enable Hold Ti	me	t _{оен}	10		ns		
Write Pulse Width		t _{we}	150		ns		
Data Latch Time		t _{DL}	50		ns		
Data Valid Time	ata Valid Time			1	μS		
Data Set-up Time	Data Set-up Time		50		ns		
Data Hold Time		t _{DH}	10		ns		
Time to Device Busy		t _{DB}		120	ns		
Busy to Write Recover	y Time	t _{BWR}	50	-	ns		

TIMING DIAGRAMS

READ CYCLE

 $\overline{WE}=V_{\rm IH}$

TIMING DIAGRAMS (Continued)

WE CONTROLLED WRITE CYCLE

CE CONTROLLED WRITE CYCLE

DEVICE OPERATION

Read

Reading data from the KM2865A/AH is similar to reading data from a static RAM. A reading cycle occurs when \overline{WE} is high and both \overline{CE} and \overline{OE} are low. If either \overline{CE} or \overline{OE} goes high, the read cycle is terminated. This two line control eliminates bus contention in a system environment. The Data I/O pins are in the high impedance state whenever \overline{OE} or \overline{CE} is high.

Write

Writing Data into the KM2865A/AH is very easy. Only a single 5V supply and TTL level signals are required. The on-chip data latches, address latches, high voltage generator, and fully self-timed control logic make writing as easy as writing to a static RAM.

A write cycle occurs when \overline{OE} is high and both \overline{CE} and WE are low. The address is latched by the falling edge of \overline{CE} or WE, whichever occurs last. The data is latched by the rising edge of \overline{CE} or WE, whichever occurs first. Address and data are conveniently latched in less than 200ns during a write operation. Once a byte write cycle is initiated it will automatically continue to completion within 10ms (max) for the KM2865A or 2ms (max) for the KM2865AH. The existing data at the selected address is automatically erased and the new data is automatically written.

Standby

Power consumption may be reduced about 60% by deselecting the device with a high input on \overline{CE} . Whenever \overline{CE} is high, the device is in the standby mode and $I/O_1 - I/O_8$ are in the high impedance state, regardless of the state of \overline{OE} or \overline{WE} .

Data Protection

Features have been designed into the KM2865A/AH that prevent unwanted write cycles during power supply transitions and system noise periods.

Write cycles are inhibited when V_{CC} is less than $V_{\text{WI}}\!=\!3.5$ volts, the Write Inhibit V_{CC} level.

During power-up the KM2865A/AH automatically prevents any write operaion for a period of 9ms for the KM2865A or 2ms for the KM2865AH after V_{cc} reaches

the V_{WI} level. This will provide the system with sufficient time to bring \overline{WE} or \overline{CE} to a high level before a write can occur. Read cycles can be executed during this initialization period.

Holding either OE low or WE high or CE high during power-on and power-off will inhibit inadvertent writes.

Data Polling

The KM2865A/AH features DATA Polling to detect the completion of a write cycle using a simple read and compare operation. Such a scheme does not required any external hardware. During a write cycle the most significant bit of the byte written to the KM2865A/AH is inverted and routed to the output buffer. The I/O pins, I/O₁-I/O₇, remain in a high impedance state until a read command is initiated. Reading the device during the write operation will produce this inverted bit at I/O₈ (I/O₁-I/O₇ are indeterminate). True data will be produced at I/O₈ once the write cycle has been completed.

Ready/Busy

The KM2865AH has a Ready/Busy output pin that indicates when the write cycle is complete. The pin is normally high except when a write cycle is in progress, in which case the pin is low.

The Ready/Busy output is configured as open-drain driver there-by allowing two or more Ready/Busy output to be or-tied. This pin requires an appropriate pullup register for proper operation. The pull-up resistor value for the Ready/Busy output maybe calculated as follows:

$$R_{p} = \frac{V_{CC} (MAX) - V_{OL} (MAX)}{I_{OL} + I_{L}} = \frac{5.1V}{2.1mA + I_{L}}$$

Where I_L is the sum of the input currents of all devices tied to the Ready/Busy pin.

Endurance and Data Retention

The KM2865A/AH is designed for applications requiring, up to 10,000 write cycles per E²PROM byte and ten years of data retention. This means that each byte may be reliably written 10,000 times without degrading device operation, and that the data in the byte will remain valid after its last rewrite operation for ten years with or without power applied.

PACKAGE DIMENSIONS

28 LEAD PLASTIC DUAL IN LINE PACKAGE

Units: Inches (millimeters)

