
DIY KIT 108. Serial Isolated Input/Output Module

PAGE 1

INTRODUCTION
Designed for control and sensing applications, this kit
provides 8 relay outputs and 4 optically isolated inputs. It
can be used in various applications including load
switching, external switch input sensing, contact closure
and external voltage sensing. It is controlled via a serial
port using a set of simple text commands. After
programming the PC can be disconnected from the PC
without affecting the state of the relays. However, the kit
is not programmable in itself. It requires an external
controller such as a PC to send it commands to control the
relays and monitor the inputs.

Connection to the isolated inputs and relay outputs is via
“pluggable type” screw terminal blocks.

Using the serial port over a parallel port has several
advantages:
1. Fewer wires are required (three instead of nine or

more)
2. Serial cables can be a lot longer (up to 100ft),

allowing “remote” control.
3. Serial ports can be used with any computer and

operating system.

The kit is constructed on a double-sided, through hole
plated printed circuit board (PCB) and fits in a plastic
case measuring 140(W) x 110(D) x 35(H)mm. Screen-
printed front and rear panels are supplied. The kit requires
a 9-to-12V DC power supply. A wall adaptor rated at
500mA (minimum) is suitable.

SPECIFICATIONS
RELAYS

Number of relays 8
Type Form C, SPDT

Contact Capacity
Resistive Load

15A 24VDC
15A 120VAC
10A 240VAC

Contact Capacity
Inductive Load

5A 24VDC
5A 120VAC
5A 240VAC

Max. Allowable Voltage AC 240V
DC 110V

Max. Allowable Current 15A
Max. Allowable Power Force 1800VAC/250W

Min. Applicable Load 5VDC 10mA
Relay Life

(Mechanical)
10 million operations

Relay Life
(Electrical/Load dependent)

100,000 operations

Operating Time 10msec max.

ISOLATED INPUTS
Number of inputs 4

Type Polarised, opto-isolated
(Not TTL/CMOS
compatible)

Voltage 5 - 24VDC
Isolation (min.) 2500V peak

1775V RMS (1 sec.)

ASSEMBLY INSTRUCTIONS
Follow the component overlay on the PCB, starting with
the resistors then diodes, IC sockets and crystal. Next fit
the ceramic and monobloc capacitors, followed by the
small electrolytic capacitors. Electrolytic capacitors are
polarised, the positive lead is marked on the overlay, the
negative is marked on the body of the capacitor. Leave
the large electrolytic until later.

Fit the regulator next and use the 3mm screw and nut to
attach the heatsink. Now insert and solder the 8 and 24
way “Dinkle” connector sockets. Make sure they are flush
to the PCB before soldering. All that remains is to fit the
DC jack and D9 connector, followed by the relays and
finally the large electrolytic capacitor. Before soldering
the DC jack cut the unused “side” tab flush with the PCB.

Do not insert any ICs yet. Connect a power supply to the
DC jack (centre positive) and measure the regulator
output (5V). If OK disconnect the power and insert the
ICs. Take care that the ICs are the correct way around and
none of the leads are bent under the body of the IC.

Before final assembly fit the reset switch to the rear panel.
Connect the reset switch to the two pads marked S1on the
PCB. Connect the power LED on the front panel to L1.
We have provided L2, the data LED. We know that some
people may not want to see a flashing light when data is
flowing so if you want it drill a hole in the panel for it.
The LED bezel is provided. Apply power again – the
power LED should light. If not then the leads may need to
be reversed. The data LED should be off. and the two
LEDs to the front panel.

The PCB uses only four of the eight mounting posts on
the bottom of the plastic case. Remove the four inner
posts. They can be easily “snipped” off using wire cutters.

Fit the front and rear panels to the PCB and hold in place.
Slowly position the PCB into the base of the plastic case,
making sure that the front and rear panels slide into the
slots provided. Secure the PCB to the case using the self-
tapping screws. Fit and secure the lid.

CIRCUIT DESCRIPTION
This kit started out as an extension of our popular Kit 74,
“PC Printer Port Relay Board”. The idea was to redesign
the PCB to fit into a plastic case and add some inputs as
well. At the same time a “latch” was added so that the PC
could be switched off without affecting the relays. This
proved to be difficult due to the PC’s POST (Power On
Self Test) function, which would operate and release
relays during power up. The easiest solution was to use
the serial port.

The circuit is very simple and straightforward. The brains
of the kit is IC1, an 89C2051 microcontroller from Atmel.
This was chosen because it has the required number of
I/O pins and a built in serial port. It is pre-programmed to
process all commands received via the serial port, control
the relays and monitor the inputs.

DIY KIT 108. Serial Isolated Input/Output Module

PAGE 2

IC8 provides conversion between TTL and RS232
signals. IC2 is an octal relay driver, ULN2803A, and is
used to drive each of the relays. The opto-couplers, IC4-7,
are used to provide electrical isolation between the inputs
and the rest of the circuitry.

At power-up, all relays are off (released) and the data
LED is off. A reset switch is provided for manually
turning off all relays. The data LED flashes whenever a
valid command is received.

OPERATION
There are four ways to communicate with the kit:
1. A terminal emulator program running on your PC.
2. DOS type batch files.
3. Writing your own software.
4. Windows software downloaded from our website

TERMINAL EMULATOR PROGRAM
If you are running Windows then one is supplied with the
operating system. In Windows 3.1 it is called “Terminal”
and in Windows 95/98 it is called “HyperTerminal”.

Of course, there are a number of third party terminal
emulator programs that will work just as well. When
using these programs the communication parameters need
to be set for 9600 baud, 8 data bits, 1 stop bit, no parity
and no flow control.

Terminal for Windows 3.1

1. Go to “Accessories” group and double click on
“Terminal”

2. Go to Settings → Communications
3. Select the following:

• Baud Rate : 9600
• Data Bits : 8
• Stop Bits : 1
• Parity : None
• Flow Control : None
• Connector : COM2:

(or whatever COM port you are using)

The program is now ready to go. When exiting you will
be asked “Do you want to save changes to the terminal
settings?” Press “Yes”. You will be asked to enter a file
name. Type in a file name (eg. K108) and press OK. Your
configuration settings are now saved.

From now on, run “Terminal” and go to File → Open.
Select the configuration file you saved previously and
click OK.

You can create an icon so that “Terminal” is run with
those settings automatically.

• Select a Program Group then click on File → New →

Program Item.
• In the “Program Item Properties” dialog box click on

Browse.

• Set the File Name to “*.trm”. A list of files with the
“.trm” extension will appear. Select the file you
saved previously (eg K108.trm) and press OK.

• You will return to the “Program Item Properties”
dialog box. Type in a suitable description and press
OK.

The new icon is now available. Double click on this icon
to run the program.

HyperTerminal for Windows 95

1. Start → Programs → Accessories → HyperTerminal
2. Double click on “Hypertrm.exe” to start the program.
3. In the “New Connection” dialog box, type in a name

for this connection (eg. K108). Select an icon for this
new connection then press OK.

4. The “Phone Number” dialog box will appear. Go to
“Connect using” and select “Direct to Com 1” (or
whatever Com port the kit is connected to). Press OK
to continue.

5. The “Port Settings” dialog box will appear. Select the
following then press OK.
• Bits per second : 9600
• Data bits : 8
• Parity : None
• Stop bits : 1
• Flow control : None

The program is now ready to go. When exiting you will
be asked “Do you want to save session K108 ?” Press
“Yes”.

A configuration file called “K108.ht” is created with the
communication settings you have selected. Its icon will
appear in the “HyperTerminal” folder. Double click on
this icon to start the program from now on.

HyperTerminal for Windows 98
Similar to W95. Run Terminal| File| Properties| and set
the Com port. Still in ‘Connect to’ click Configure then
set parameters. If after setting and saving (Save As
K108.ht) you get funny characters on the screen then exit
Terminal and re-start. Press Reset on the K108 panel. The
character should appear on the screen if the powered
K108 is connected.

term.exe
We use our own terminal program term.exe to talk to Kit
108 from a PC. A full explanation how to get this
program and set it up is given on page 6 below.

BATCH FILES
It is possible to control the kit using batch files. However
batch files can only send data to the kit, they cannot
process any data received back from the kit. Therefore it
is possible to operate and release relays but not to read
the status of the relays or the inputs.

If controlling relays is all you need to do then using batch
files is a simple way to do it. Maybe get our Kit 74 which
is specifically designed for batch control.

DIY KIT 108. Serial Isolated Input/Output Module

PAGE 3

The following example shows the batch file commands
required to send commands to the kit (assuming the kit is
connected to COM2)

MODE COM2: BAUD=96 PARITY=N DATA=8 STOP=1
ECHO “N3” >COM2
The “MODE” command sets up the serial port to the
required communication settings.

The “ECHO” command is normally used to write text to
the screen. Using the output re-direction operator “>”
causes the text to be sent to the serial port.

The second line sends the command “N3” to COM2
which causes relay 3 to turn on. Just keep adding ECHO
commands to send further commands to the kit.

WRITING YOUR OWN SOFTWARE
As previously mentioned the kit is controlled via a set of
simple text commands. Similarly all responses output by
the kit are in text format. This makes it quite easy to
communicate with the kit.

Using the serial port also makes it easier to write your
own software to operate the kit. Visual Basic comes with
a full set of functions to use with the serial port, as do
most high level languages.

QBasic is available on most DOS based systems and is
quite easy to use. The following QBasic example shows
how to access the serial port and send commands to and
receive data from the kit. The ‘line numbers’ are for
explanation purposes only and are not required.

This sample program configures the serial port and reads
the status of inputs 1-4. It then sets relays 1-4 accordingly.
For example, if input 1 is ‘high’ and inputs 2-4 are not
then relay 1 will be operated and all the other relays
released. In other words relays 1-4 are set according to the
condition of inputs 1-4.

1. OPEN "COM2:9600,N,8,1" FOR RANDOM AS 1
2. PRINT #1, "I0"
3. INPUT #1, A$
4. INPUT #1, A$
5. PRINT "Input Status: "; A$
6. PRINT #1, "R"; A$
7. INPUT #1, A$
8. PRINT #1, "S0"
9. INPUT #1, A$
10. INPUT #1, A$
11. PRINT "Relay Status: "; A$
12. CLOSE #1

Line 1 configures COM2 for 9600 baud, 8 data bits, 1
stop bit and no parity. The COM port is assigned ‘channel
#1’. Change it to whatever COM port you wish to use.
Line 2 sends the command ‘I0’. This command returns
the status of ALL the inputs. Output is in ASCII HEX.
Line 3 reads a line of characters and assigns them to
variable A$. Since the kit echos back all commands sent
to it, this is simply reading back the previous command
string, ‘I0’. It is ignored.

Line 4 reads the status of the ALL inputs (the output of
the ‘I0’ command). The input status is contained in
variable “A$”.
Line 5 prints the input status to the screen.
Line 6 sends the ‘R’ command letter followed by the
input status contained in “A$”. The ‘R’ command sets
ALL relays directly according to the following hex byte.
In this case the hex byte is the input status just read.
Line 7 reads in the ‘R’ command letter and hex byte that
was echoed back by the kit, as in line 3.
Line 8 sends the command ‘S0’. This command returns
the status of ALL the relays.
Line 9 reads in the echoed command, as in lines 3 and 7.
Line 10 reads the status of the ALL relays (the output of
the ‘S0’ command).
Line 11 prints the relay status byte to the screen. It should
be the same as the input status byte.
Line 12 closes the COM port opened at the start of the
program.

Note:
The module echoes all characters received back to the
host computer. These characters must be processed or
input overrun errors will occur. In QBasic , a statement
such as INPUT (or LINE INPUT) will do that and should
be used after each command is sent to the kit.

TESTING
The easiest way to test the kit is to use a terminal
emulator program running on your computer. Run the
program and set the communication parameters (as
described above).

Connect the kit to the serial port on your PC using a
straight through 9 pin cable. Switch on the power. The
kit outputs an ‘#’ character as a prompt to indicate it is
waiting to receive commands.

Send a few commands to operate and release relays and
check their status. Apply a voltage level to each of the
inputs and read back its status. See also page 6 for this
testing described in more detail.

COMMANDS
A set of simple text commands is used to control the
relays, return their status or read the inputs. Each
command consists of a string of ASCII characters
followed by carriage return (Enter ↵).

The ‘#’ character is output as a prompt to indicate the kit
is waiting for a command. It should be on your screen.
Each character received is echoed back. On completion of
each command, good or bad, a carriage return/line feed
combination is output followed by the ‘#’ prompt. If the
command or parameter is invalid, the command is ignored
and a ‘?’ is output before the next ‘#’ prompt.

Note:
• Commands are not processed until the carriage return

character is received.
• Commands can be in upper or lower case.

DIY KIT 108. Serial Isolated Input/Output Module

PAGE 4

• Relays are numbered 1 to 8. Relay number ‘0’ (zero)
indicates ALL relays.

• Inputs are numbered 1 to 4. Input number ‘0’ (zero)
indicates ALL inputs.

• Where a hex byte is used, each bit within the byte
indicates its corresponding relay or input. Bit 0
indicates relay or input 1, bit 1 indicates relay or
input 2, etc.

Nx – Turn a relay ON (where x = relay number)

Eg. “N3” – turn on relay 3

“N0” – turn on ALL relays

Fx – Turn a relay OFF (where x = relay number)

Eg. “F3” – turn off relay 3
 “F0” – turn off ALL relays

Tx – TOGGLE a relay on/off (where x = relay number)

Changes the state of a relay (ON to OFF, OFF to ON)

Eg. “T3” – toggle relay 3
 “T0” – toggle ALL relays

Rhh – Set ALL relays directly

“hh” is a hexadecimal byte. Each bit within the byte
indicates whether the corresponding relay is operated or
not. If the bit is ‘1’ then the relay is operated, if the bit is
‘0’ then the relay is released.

Eg. “R55” – relays 1,3,5,7 ON, all others OFF
 “R0F” – relays 1-4 ON, all others OFF

Sx – relay STATUS (where x = relay number)

A ‘0’ (zero) is returned if the relay is released, ‘1’ if
operated.

The command “S0” returns the status of ALL relays. In
this case a hex byte is returned. Each bit within the byte
indicates the status of the corresponding relay.

Eg. “S3” – returns the status of relay 3
 “S0” – returns the status of ALL relays

Ix – INPUT status (where x = input number)

A ‘1’ is returned if the input is active or enabled, ‘0’
otherwise.

The command “I0” returns the status of ALL inputs. As
with the ‘S’ command, a hex byte is returned. Bits 0-3
indicate the status of inputs 1-4. Bits 4-7 are unused and
are set to ‘0’.

Eg. “I1” – returns the status of input 1
 “I0” – returns the status of ALL inputs

Note the output is in ASCII hex, not ASCII decimal.

A special command, ‘?’, will print the software revision
date.

Windows Software. Try the new Windows software
which can be d/l from:

http://www.crowcroft.net/kitsrus/diyk108.zip

This has been tested under W9x/NT/2000.

Please send me comments and error reports to

peterhk@kitsrus.com

IF IT DOES NOT WORK
Poor soldering (“dry joints”) is the most common reason
for the circuit not working. Check all soldered joints
carefully under a good light. Re-solder any that look
suspicious.

• Are all the components in their correct position on

the PCB.
• Are the electrolytic capacitors the right way round?
• Are the ICs the right way around?
• Are any IC leads bent up under the IC body?
• Is the regulator output = 5V?
• Is it connected to the right serial port on your PC?
• Are you using a straight through cable?
• Is the serial port configured correctly?

Web Address & Email
You can email the developer of this kit at

frank@ozitronics.com

Information on other kits in the range is available from
our Web page at:

http://kitsrus.com

Corrections
Version 2 PCB released november, 1999. Packing list
corrected 1/2000.

5/2001. Software bug on Tx, x=2 thru 8, corrected in
firmware.

DIY KIT 108. Serial Isolated Input/Output Module

PAGE 5

PART LIST – KIT 108
Resistors (0.25W unless specified)
470R.....................................R1,10 2
1K, 0.5W..............................R6,7,8,9 4
10KR2,3,4,5,11 5
Capacitors
27pF ceramicC11.12 2
100nF monobloc..................C1,3,5 3
10uF 16V electroC4,6,7,8,9,10 6
1000uF 25V electro.............C2................................... 1
Semiconductors
1N4004 diodeD1,2,3,4,5 5
1N4148D6 1
4N25 opto-coupler ICIC4,5,6,7 4
AT89C2051 uCIC1 pre-programmed.....1
ICL232 IC............................IC8 1
RS232 driver/receiver
ULN2803A..........................IC2 1
Octal open collector driver
7805 regulator, TO-220.......IC3 1
LED, panel mountingL1,2................................ 2
 3mm red
Miscellaneous
Crystal, 11.0592MHz..........Y1 1
D9 connectorX1 1
PCB mounting, female
Relay, SPDTRL1,2,3,4,5,6,7,8........... 8
“Goodsky” RWH-SH-112D
2.5mm DC jack....................X2 1
Terminal socketX4 1
8 way, PCB mtg, “Dinkle” 2EHDRC-08P
Terminal socketX3 1
24 way, PCB mtg, “Dinkle” 2EHDRC-24P
Terminal plug, 3 way, to fit “X4” 8
“Dinkle” 2ESDV-03P
Terminal plug, 2 way, to fit “X3” 4
“Dinkle” 2ESDV-02P
Heatsink, to fit “IC3” .. 1
Pushbutton, panel mtg... 1
IC socket, 6 pin, for “IC4,5,6,7” 4
IC socket, 16 pin, for “IC8” .. 1
IC socket, 18 pin, for “IC2” .. 1
IC socket, 20 pin, for “IC1” .. 1
Screw, 3 x 8mm, to fit heatsink to “IC3”.................... 1
Nut, 3mm, to fit heatsink to “IC3”.............................. 1
Self tapping screws for mounting PCB 4
Plastic case, 140(W) x 110(D) x 35(H)mm 1
PCB, K108V2.. 1
Set of front & rear panels .. 1
Hookup wire, twin, 36cm (14”)

The source code for this kit is not available.

DIY KIT 108. Serial Isolated Input/Output Module

PAGE 6

How to Use ‘term.exe’ Communications Program

PAGE 7

Frank Crivelli (www.ozitronics.com) has written his own DOS-based comms (communications)
program called ‘term.exe’. It is a simple, basic terminal program which does its job without a lot of
‘bells & whistles’. Also as of this moment he does not know how to write Windows software!

You may download it from http://kitsrus.com/zip/term.zip

How to install ‘term.exe’
This is a detailed explanation of how I have installed ‘term.exe’ in my Windows 98SE system.
There are slight differences with Windows 95 and 2000 but it gives you an idea of how to do it.

1. Unzip ‘term.zip’.
2. Move ‘term.exe’ to a folder of your choice. I use the same folder as Hyperterminal.

C:\Program Files\Accessories\Hyperterminal
3. Right click on some blank space on the desktop and select "New → Shortcut".
4. Click on the "Browse" button and find 'term.exe' on your hard disk in the above mentioned

folder
5. Click on it and select "open". Click "Next", "Next" then "Finish".

You should now have an icon on your desktop. If you want to change the icon’s name then right
click on it and select “Rename”.

6. Right click on this icon and select "Properties".
7. Click on the "Program" tab.
8. Go to the end of the "Cmd line" box and type in " 9600" (you must include the leading

space). If you are using COM2 then type " /2 9600" instead. Notice that the “Working”
directory/folder is set to the same as the “Cmd line”. You can change this if necessary.

9. Tick the “Close on exit” box. This will shutdown the DOS window when you quit
‘term.exe’.

10. Click on the “Change Icon…” button if you want to change the icon associated with this
shortcut.

11. Click on the “Screen” tab and select “Full-screen”.
12. Click "OK".

To run ‘term.exe’ click on the desktop icon. Make sure you have 12VDC connected center positive.
Press Enter. You should get a ‘#’. In my W98SE system I sometimes have to exit run it up to 2
more times in order to capture the serial port. You should not need more than three times.

Communicating with the Kit

See the COMMANDS section on page 3. Enter I0. You should get 00 in response. Enter N1. You
should hear the faint click as Relay 1 engages. Press the hardware Reset button and you will hear it
release. Enter N0 and all relays will turn on. Play with the other Commands as outlined on page 3.

Use a 2 position terminal block (as supplied) and connect between 5 – 24V as Inputs. Connect to
Isolated Inputs position 1, +ve and –ve as shown on the end panel. Enter I0. You should get 01 as
the status. In position 2 you should get 02, position 3, 04, position 4, 08. With no input you should
get 00. With all inputs positive you should get 0F as the input status.

The power of the Kit lies in using software to read these inputs and act accordingly by setting or
releasing relays.

- - - - - - - - - - - - - - - - -

