

Features

- Operating voltage: 2.5V~5.5V
- Serial mode for the HT9200A
- Serial/parallel mode for the HT9200B
- Low standby current

General Description

The HT9200A/B tone generators are designed for MCU interfaces. They can be instructed by a MCU to generate 16 dual tones and 8 single tones from the DTMF pin. The HT9200A provides a serial mode whereas the

• Low total harmonic distortion

- 3.58MHz crystal or ceramic resonator
- HT9200A: 8-pin DIP/SOP package HT9200B: 14-pin SOP package

HT9200B contains a selectable serial/parallel mode interface for various applications such as security systems, home automation, remote control through telephone lines, communication systems, etc.

Selection Table

Function Part No.	Operating Voltage	OSC Frequency	Interface	Package
HT9200A	2.5V~5.5V	3.58MHz	Serial	8 DIP/SOP
HT9200B	2.5V~5.5V	3.58MHz	Serial/Parallel	14 SOP

Block Diagram

Pin Assignment

				1 14	Ълор
			X2 [1	
_			X1 🗆	3 12	
	8		VSS 🗆	4 11	🗅 СLК
X2 ☐ 2	7	DTMF		5 10	⊐ S/P
X1 🗖 3	6	🗆 DATA	D0 🗆	6 9	🗆 D3
VSS □ 4	5	⊐ CLK	D1 🗆	7 8	🗆 D2
HT9200A - 8 DIP-A/SOP-A			HT9200B - 14 SOP-/		

Unit: µm

Pad Assignment

Pad No.	х	Y	Pad No.	х	Y
1	-553.30	430.40	8	553.30	-523.50
2	-553.30	-133.50	9	553.30	-190.30
3	-553.30	-328.50	10	553.30	4.70
4	-553.30	-523.50	11	553.30	340.30
5	-220.10	-523.50	12	374.90	523.50
6	-25.10	-523.50	13	-279.30	523.50
7	308.10	-523.50			

Pad Coordinates

* The IC substrate should be connected to VSS in the PCB layout artwork.

Pin Description

Pin Name	I/O	Internal Connection	Description
CE	Ι	CMOS IN	Chip enable, active low. No internal pull-high resistor.
X2	0		The system oscillator consists of an inverter, a bias resistor, and the required load
X1	Ι	Oscillator	capacitor on chip. The oscillator function can be implemented by Connect a standard 3.579545MHz crystal to the X1 and X2 terminals.
VSS	_	—	Negative power suppl, ground
NC			No connection
D0~D3	I	CMOS IN Pull-high or Floating	Data inputs for the parallel mode When the IC is operating in the serial mode, the data input terminals (D0~D3) are included with a pull-high resistor. When the IC is operating in the parallel mode, these pins become floating.
Б/Р	I	CMOS IN	Operation mode selection input \overline{S} /P="H": Parallel mode \overline{S} /P="L": Serial mode
CLK	I	CMOS IN Pull-high or Floating	Data synchronous clock input for the serial mode When the IC is operating in the parallel mode, the input terminal (CLK) is included with a pull-high resistor. When the IC is operating in the serial mode, this pin be- comes floating.
DATA	I	CMOS IN Pull-high or Floating	Data input terminal for the serial mode When the IC is operating in the parallel mode, the input terminal (DATA) is included with a pull-high resistor. When the IC is operating in the serial mode, this pin be- comes floating.
DTMF	0	CMOS OUT	Output terminal of the DTMF signal
VDD			Positive power supply, 2.5V~5.5V for normal operation

Approximate Internal Connection Circuits

Absolute Maximum Ratings

Supply Voltage	V _{SS} –0.3V to V _{SS} +6V	Storage Temperature50°C to 125°	С
Input Voltage	V _{SS} –0.3 to V _{DD} +0.3V	Operating Temperature20°C to 75°	С

Note: These are stress ratings only. Stresses exceeding the range specified under "Absolute Maximum Ratings" may cause substantial damage to the device. Functional operation of this device at other conditions beyond those listed in the specification is not implied and prolonged exposure to extreme conditions may affect device reliability.

Electrical Characteristics

Ta=25°C

Symphel	Parameter		Test Conditions		-	Maria	11	
Symbol			Conditions	Min.	Тур.	Max.	Unit	
V_{DD}	Operating Voltage	_		2.5		5.5	V	
		2.5V	S/P=V _{DD} ,D0~D3=V _{SS} ,	—	240	2500		
I _{DD}	Operating Current	5.0V	$\overline{CE}=V_{SS}$, No load	_	950	3000	μA	
VIL	"Low" Input Voltage	_		VSS	_	0.2V _{DD}	V	
VIH	"High" Input Voltage	_		0.8V _{DD}		V _{DD}	V	
	Otoredhu Ourrent	andby Current $2.5V$ $\overline{S/P=V_{DD}, \overline{CE}=V_{DD}, no load}$	—		1			
I _{STB} Star	Standby Current	5.0V		_	_	2	μA	
R₽			<u>)</u> ∕ −0)∕	120	180	270	ko	
Кр	Pull-high Resistance	5.0V	V _{OL} =0V	45	68	100	kΩ	
t _{DE}	DTMF Output Delay Time (Parallel Mode)	5V			t _{UP} +6	t _{UP} +8	ms	
V _{TDC}	DTMF Output DC Level	2.5V~ 5.5V	DTMF Output	0.45V _{DD}	_	0.75V _{DD}	V	
I _{TOL}	DTMF Sink Current	2.5V	V _{DTMF} =0.5V	-0.1		_	mA	
V _{TAC}	DTMF Output AC Level	2.5V	Row group, R_L =5k Ω	0.12	0.15	0.18	Vrms	
A _{CR}	Column Pre-emphasis	2.5V	Row group=0dB	1	2	3	dB	
RL	DTMF Output Load	2.5V	t _{HD} ≤–23dB	5		_	kΩ	

Symbol	Parameter	Test Conditions		Min.	Tran	Max.	Unit
Symbol	Farameter	V_{DD}	Conditions	IVIIII.	Тур.	IVIAX.	Unit
t _{HD}	Tone Signal Distortion	2.5V	$R_L=5k\Omega$	_	-30	-23	dB
fclk	Clock Input Rate (Serial Mode)	_		_	100	500	kHz
t _{UP}	Oscillator Starting Time (When \overline{CE} is low)	5.0V	The time from \overline{CE} falling edge to normal oscillator operation	_		10	ms
fosc	System Frequency	_	Crystal=3.5795MHz	3.5759	3.5795	3.5831	MHz

Functional Description

The HT9200A/B are DTMF generators for MCU interfaces. They are controlled by a MCU in the serial mode or the parallel mode (for the HT9200B only).

Serial Mode (HT9200A/B)

The HT9200A/B employ a data input, a 5-bit code, and a synchronous clock to transmit a DTMF signal. Every digit of a phone number to be transmitted is selected by a series of inputs which consist of 5-bit data. Of the 5

bits, the D0(LSB) is the first received bit. The HT9200A/B will latch data on the falling edge of the clock (CLK pin). The relationship between the digital codes and the tone output frequency is shown in Table 1. As for the control timing diagram, refer to Figure 1.

When the system is operating in the serial mode a pull-high resistor is attached to D0~D3 (for parallel mode) on the input terminal.

Table 1: Digits vs. Input Data vs. Tone Output Frequency (Serial Mode)

Digit	D4	D3	D2	D1	D0	Tone Output Frequency (Hz)
1	0	0	0	0	1	697+1209
2	0	0	0	1	0	697+1336
3	0	0	0	1	1	697+1477
4	0	0	1	0	0	770+1209
5	0	0	1	0	1	770+1336
6	0	0	1	1	0	770+1477
7	0	0	1	1	1	852+1209
8	0	1	0	0	0	852+1336
9	0	1	0	0	1	852+1477
0	0	1	0	1	0	941+1336
*	0	1	0	1	1	941+1209
#	0	1	1	0	0	941+1477
А	0	1	1	0	1	697+1633
В	0	1	1	1	0	770+1633
С	0	1	1	1	1	852+1633
D	0	0	0	0	0	941+1633
_	1	0	0	0	0	697
_	1	0	0	0	1	770
_	1	0	0	1	0	852
_	1	0	0	1	1	941
_	1	0	1	0	0	1209
_	1	0	1	0	1	1336
	1	0	1	1	0	1477
	1	0	1	1	1	1633
DTMF OFF	1	1	1	1	1	_

Note: The codes not listed in Table 1 are not used D4 is MSB

For the HT9200B, the \overline{S}/P pin has to be connected low for serial mode operation.

Parallel Mode (HT9200B)

The HT9200B provides four data inputs D0~D3 to generate their corresponding DTMF signals. The \overline{S} /P has to be connected high to select the parallel operation mode. Then the input data codes should be determined. Finally, the \overline{CE} is connected low to transmit the DTMF signal from the DTMF pin.

The T_{DE} time (about 6ms) will be delayed from the \overline{CE} falling edge to the DTMF signal output.

The relationship between the digital codes and the tone output frequency is illustrated in Table 2. As for the control timing diagram, see Figure 2.

When the system is operating in the parallel mode, D0~D3 are all in the floating state. Thus, these data input pins should not float.

Digit	D3	D2	D1	D0	Tone Output Frequency (Hz)
1	0	0	0	1	697+1209
2	0	0	1	0	697+1336
3	0	0	1	1	697+1477
4	0	1	0	0	770+1209
5	0	1	0	1	770+1336
6	0	1	1	0	770+1477
7	0	1	1	1	852+1209
8	1	0	0	0	852+1336
9	1	0	0	1	852+1477
0	1	0	1	0	941+1336
*	1	0	1	1	941+1209
#	1	1	0	0	941+1477
A	1	1	0	1	697+1633
В	1	1	1	0	770+1633
С	1	1	1	1	852+1633
D	0	0	0	0	941+1633

Note: The data (D0~D3) should be ready before the $C\overline{E}$ becomes low.

Figure 2

Tone Frequency

Output Free	%Error	
Specified	Actual	%EIT01
697	699	+0.29%
770	766	□0.52%
852	847	□0.59%
941	948	+0.74%
1209	1215	+0.50%
1336	1332	0.30%
1477	1472	0.34%

% Error does not contain the crystal frequency drift

Application Circuits

Serial Mode

Serial/Parallel Mode

Package Information

8-pin DIP (300mil) Outline Dimensions

Symbol	Dimensions in mil		
Symbol	Min.	Nom.	Max.
A	355		375
В	240	_	260
С	125	_	135
D	125	_	145
E	16	_	20
F	50	_	70
G	_	100	_
н	295	_	315
I	335	_	375
α	0°	_	15°

8-pin SOP (150mil) Outline Dimensions

Symbol	Dimensions in mil		
Symbol	Min.	Nom.	Max.
A	228	_	244
В	149	_	157
С	14	_	20
C′	189	_	197
D	53	_	69
E	_	50	_
F	4	_	10
G	22	_	28
Н	4	_	12
α	0°	_	10°

14-pin SOP (150mil) Outline Dimensions

Symbol	Dimensions in mil		
Symbol	Min.	Nom.	Max.
А	228		244
В	149	_	157
С	14		20
C′	336		344
D	53		69
E	_	50	_
F	4		10
G	22		28
Н	4	_	12
α	0°		10°

Product Tape and Reel Specifications

Reel Dimensions

SOP 8N

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	62±1.5
С	Spindle Hole Diameter	13.0+0.5 0.2
D	Key Slit Width	2.0±0.15
T1	Space Between Flange	12.8+0.3 0.2
T2	Reel Thickness	18.2±0.2

SOP 14N

Symbol	Description	Dimensions in mm
А	Reel Outer Diameter	330±1.0
В	Reel Inner Diameter	62±1.5
С	Spindle Hole Diameter	13.0+0.5 0.2
D	Key Slit Width	2.0±0.5
T1	Space Between Flange	16.8+0.3 0.2
T2	Reel Thickness	22.2±0.2

Carrier Tape Dimensions

SOP 8N

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	12.0+0.3 0.1
Р	Cavity Pitch	8.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	5.5±0.1
D	Perforation Diameter	1.55±0.1
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	6.4±0.1
B0	Cavity Width	5.20±0.1
K0	Cavity Depth	2.1±0.1
t	Carrier Tape Thickness	0.3±0.05
С	Cover Tape Width	9.3

SOP 14N

Symbol	Description	Dimensions in mm
W	Carrier Tape Width	16.0+0.3 _0.1
Р	Cavity Pitch	8.0±0.1
E	Perforation Position	1.75±0.1
F	Cavity to Perforation (Width Direction)	7.5±0.1
D	Perforation Diameter	1.5+0.1
D1	Cavity Hole Diameter	1.5+0.25
P0	Perforation Pitch	4.0±0.1
P1	Cavity to Perforation (Length Direction)	2.0±0.1
A0	Cavity Length	6.5±0.1
B0	Cavity Width	9.5±0.1
K0	Cavity Depth	2.1±0.1
t	Carrier Tape Thickness	0.3±0.05
С	Cover Tape Width	13.3

Holtek Semiconductor Inc. (Headquarters) No.3, Creation Rd. II, Science Park, Hsinchu, Taiwan

Tel: 886-3-563-1999 Fax: 886-3-563-1189 http://www.holtek.com.tw

Holtek Semiconductor Inc. (Taipei Sales Office)

4F-2, No. 3-2, YuanQu St., Nankang Software Park, Taipei 115, Taiwan Tel: 886-2-2655-7070 Fax: 886-2-2655-7373 Fax: 886-2-2655-7383 (International sales hotline)

Holtek Semiconductor Inc. (Shanghai Sales Office)

7th Floor, Building 2, No.889, Yi Shan Rd., Shanghai, China 200233 Tel: 021-6485-5560 Fax: 021-6485-0313 http://www.holtek.com.cn

Holtek Semiconductor Inc. (Shenzhen Sales Office)

5/F, Unit A, Productivity Building, Cross of Science M 3rd Road and Gaoxin M 2nd Road, Science Park, Nanshan District, Shenzhen, China 518057 Tel: 0755-8616-9908, 8616-9308 Fax: 0755-8616-9533

Holtek Semiconductor Inc. (Beijing Sales Office)

Suite 1721, Jinyu Tower, A129 West Xuan Wu Men Street, Xicheng District, Beijing, China 100031 Tel: 010-6641-0030, 6641-7751, 6641-7752 Fax: 010-6641-0125

Holtek Semiconductor Inc. (Chengdu Sales Office)

709, Building 3, Champagne Plaza, No.97 Dongda Street, Chengdu, Sichuan, China 610016 Tel: 028-6653-6590 Fax: 028-6653-6591

Holmate Semiconductor, Inc. (North America Sales Office)

46729 Fremont Blvd., Fremont, CA 94538 Tel: 510-252-9880 Fax: 510-252-9885 http://www.holmate.com

Copyright © 2004 by HOLTEK SEMICONDUCTOR INC.

The information appearing in this Data Sheet is believed to be accurate at the time of publication. However, Holtek assumes no responsibility arising from the use of the specifications described. The applications mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or representation that such applications will be suitable without further modification, nor recommends the use of its products for application that may present a risk to human life due to malfunction or otherwise. Holtek's products are not authorized for use as critical components in life support devices or systems. Holtek reserves the right to alter its products without prior notification. For the most up-to-date information, please visit our web site at http://www.holtek.com.tw.