INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

HEF4070B gates Quadruple exclusive-OR gate

Product specification
File under Integrated Circuits, IC04

January 1995

Quadruple exclusive-OR gate

HEF4070B gates

QUADRUPLE EXCLUSIVE-OR GATE

The HEF4070B provides the positive quadruple exclusive-OR function. The outputs are fully buffered for highest noise immunity and pattern insensitivity of output impedance.

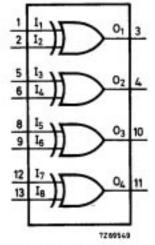


Fig. 1 Functional diagram.

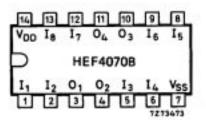


Fig. 2 Pinning diagram.

HEF4070BP(N): 14-lead DIL; plastic

(SOT27-1)

HEF4070BD(F): 14-lead DIL; ceramic (cerdip)

(SOT73)

HEF4070BT(D): 14-lead SO; plastic

(SOT108-1)

(): Package Designator North America

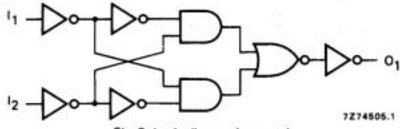


Fig. 3 Logic diagram (one gate).

APPLICATION INFORMATION

Some examples of applications for the HEF4070B are:

- Logical comparators
- · Parity checkers and generators

TRUTH TABLE

11	12	01	
L	L	L	
H	L	н	
-	H	H	
H	Н	L	

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)

FAMILY DATA

see Family Specifications

IDD LIMITS category GATES

Quadruple exclusive-OR gate

HEF4070B gates

A.C. CHARACTERISTICS

 $V_{SS} = 0 \text{ V; } T_{amb} = 25 \text{ }^{o}\text{C; } C_L = 50 \text{ pF; input transition times} \leq 20 \text{ ns}$

	V _{DD} V	symbol	typ.	max.		typical extrapolation formula
Propagation delays				-		
$I_n \longrightarrow O_n$	5		85	175	ns	58 ns + (0,55 ns/pF) C ₁
HIGH to LOW	10	tPHL	35	75	ns	24 ns + (0,23 ns/pF) C
	15	_	30	55	ns	21 ns + (0,16 ns/pF) C
	5		75	150	ns	48 ns + (0,55 ns/pF) C ₁
LOW to HIGH	10	tpLH	30	65	ns	19 ns + (0,23 ns/pF) C
	15		25	50	ns	17 ns + (0,16 ns/pF) C
Output transition						
times	5		60	120	ns	10 ns + (1,0 ns/pF) Cլ
HIGH to LOW	10	^t THL	30	60	ns	9 ns + (0,42 ns/pF) C
	15		20	40	ns	6 ns + (0,28 ns/pF) C_
	5	,	60	120	ns	10 ns + (1,0 ns/pF) C ₁
LOW to HIGH	10	^t TLH	30	60	ns	9 ns + (0,42 ns/pF) C
	15		20	40	ns	6 ns + (0,28 ns/pF) C

	V _{DD} V	typical formula for P (μW)	where f _i = input freq. (MHz)
Dynamic power dissipation per package (P)	5 10 15	$\begin{array}{c} 1100 \; f_{i} + \; \Sigma (f_{o}C_{L}) \; \times V_{DD}^{2} \\ 4900 \; f_{i} + \; \Sigma (f_{o}C_{L}) \; \times V_{DD}^{2} \\ 14 \; 400 \; f_{i} + \; \Sigma (f_{o}C_{L}) \; \times V_{DD} \end{array}$	f_0 = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_0C_L)$ = sum of outputs V_{DD} = supply voltage (V)