GD54/74LS74A DUAL D-TYPE POSITIVE EDGE-TRIGGERD FLIP-FLOPS WITH PRESET AND CLEAR

Description

This device contains two independent D-type positive edge triggered flip-flops.

A low level at the preset or clear inputs sets or resets the outputs regardless of the levels of the other inputs. When preset and clear are inactive (high), data at the D input meeting the setup time requirements are transferred to the outputs on the positive-going edge of the clock pulse. Clock trigering occurs at a voltage level and is not directly related to the rise time of the clock pulse. Following the hold time interval, data at the D input may be changed without affecting the levels at the outputs.

Function Table

* The output levels in this configuration are not guaranteed to meet the minimum levels for V_{OH} if the lows at preset and clear are near V_{IL} maximum, Furthermore, this configuration is nonstable; that is it will not persist when either preset or clear returns to its inactive (high) level.

	OUTPUTS				
PRESET	CLEAR	CLOCK	D	Q	δ
L H L	H L L H	X X X t	хххн.	H L H* H	L H H* L
н	н Н	L T	<u>х</u>	a _o	<u> </u>

Absolute Maximum Ratings

٠	Supply voltage, Vcc		
		·	
		54LS	
		74LS	0°C to 70°C
٠	Storage temperature range		-65°C to 150°C

Recommended Operating Conditions

SYMBOL	PARAMETER			MIN	NOM	MAX	UNIT	
V _{CC}	Supply voltage		54	4.5	5	5.5	v	
	74			4.75	5	5.25		
I _{OH}	High-level output current		54,74			-400	μA	
I _{OL}	Low-level output current		54			4	mA	
			74			8	1	
f _{clock}	Clock frequency			0		25	MHz	
tw	Pulse width	Clock high		25			ns	
•vv		Preset or clear low	······	25				
t _{SU}	Setup time high-level data			20†*			ns	
	low-level data			201*	-		1	
t _h	Hold time			5↑*			ns	
T _A	Operating free-air temperature 54 74		54	-55		125	°C	
			0		70			

* † for rising edge

Electrical Characteristics over recommended operating free-air temperature range (unless otherwise noted)

SYMBOL	PARAMETER	TEST CONDITIONS			MIN	TYP (Note 1)	мах	UNIT
V _{IH}	High level input voltage				2			V
VIL	Low-level input voltage			54			0.7	v
				74			0.8	
VIK	Input clamp voltage	V _{CC} =Min, I	=-18mA				-1.5	V
V _{OH}	High level output voltage	V _{CC} =Min,	V _{IL} =Max	54	2.5	3.4		v
		I _{OH} =Max ,	V _{IH} =Min	75	2.7	3.4		
V _{OL}	Low level output voltage	V _{CC} =Min V _{IL} =Max	I _{OL} =4mA	54,74		0.25	0.4	v
		V _{IH} =Min	I _{OL} =8mA	74		0.35	0.5	_
ł _i	Input current at maximum	V _{CC} =Max	D, CK				0.1	mA
	input voltage	V ₁ ==7V	PR, CLR				0.2	
Чн	High-level input current	V _{CC} =Max	D, CK				20	μA
		V ₁ =2.7V	PR, CLR				40	,
I _{IL}	Low-level input current	V _{CC} =Max	D, CK				-0.4	mA
		Vi=0.4V	PR, CLR				-0.8	
los	Short-circuit output current	V _{CC} =Max (Note 2)			-20		-100	mA
Icc	Supply current	V _{CC} =Max (Note 3)				4	8	mA

Note 1: All typical values are at V_{CC}=5V, T_A=25°C.

Note 2: Not more than one should be shorted at a time, and the duration should not exceed one second. Note 3: I_{CC} is measured with all inputs grounded and all outputs open.

Switching Characteristics, $V_{CC} = 5V$, $T_A = 25^{\circ}C$

SYMBOL*	FROM (INPUT)	TO (OUTPUT)	TEST CONDITION#	MIN	TYP	MAX	UNIT
4		,0 (0011 0.1)		25	33		MHz
t	Clear, preset	Q or Q	C _L =15pF R _L =2KΩ		13	25	ns
t _{PLH}	or Clock (as appropriate)				25	40	

 $f_{\text{max}} = \text{maximum clock frequency}$ $t_{\text{PLH}} = \text{propagation delay time, low-to-high-level output.}$

* t_{PHL}=propagation delay time, high-to-low-level output.

*For load circuit and voltage waveforms, see page 3-11.

Application Example 4 divider

*For load circuit and voltage waveforms, see page 3-12.