

This document contains information proprietary to Crystal Clear Technology Sdn. Bhd. Any disclosure or use is expressly prohibited, except upon explicit written permission by Crystal Clear Technology Sdn. Bhd.

ISSUE DATE: 9th NOVEMBER 2004DOCUMENT NO.: -SUPERSEDE: -DOCUMENT TITLE: TECHNICAL SPECIFICATION - 5035PAGE NO.: Page 1 of 51

PRODUCT DEVELOPMENT (DEPARTMENT)

MODULE : GF5035TNWBZNL04 (G64128W07NBW00)

TYPE OF TEST : COG

	Designation	Name	Signature/Date
Originator	ELECTRONIC ENGINEER	NOR AZLINA MUSLIM	
Reviewed by	ASST. MANAGER SOFTWARE	ZAINUL AZHAN AHMAD BASHIR	
Approved by	HOD PROD. DEV. LCM	VUTHY TAING	

1.0 TABLE OF CONTENTS

		Page
1.	Contents	2
2.	Record of Revision	3
3.	General Specification	4
4.	Definition of Terminals	5
5.	Block Diagram	6
6.	Mechanical Specifications	7~8
7.	Power Supply Circuit	9~17
8.	Module Functions	18~19
9.	Display Data Functions	20~21
10.	LCD Display Control	22~30
11.	Command Sample Sequence	31
12.	Command Descriptions	32~38
13.	Absolute Maximum Rating	39
14.	Dc module Electrical Characteristics	39
15.	System Bus Read/Write Characteristics	40~45
16.	Optical Characteristics	46~48
17.	Sample Programming	49~50
18.	Precaution for Handling LCM	51

2.0 RECORD OF DIVISION

Rev	Date	Item	Page	Comment
Α	9/11/04			Initial Release

3.0 GENERAL SPECIFICATIONS

- Display format: 128 * 64 dot matrix graphic
- Microprocessor interface: Parallel/Serial
- LCD type: FSTN Negative Dark Blue
- Viewing angle: 6 o'clock
- LCD controller: S1D10605D04B
- VDD: 2.7V (Min), 3.3V (Max)
- Operating temperature: -20°C to 70°C
- Storage temperature: -30°C to 80°C
- Front polarizer: Transmissive
- Back polarizer: Transmissive
- Pin outs connection: FFC
- Module size: 76.00 x 50.60 mm
- View area: 70.70 x 38.80 mm
- Active area: 66.52 x 33.24 mm
- Dot size: 0.48 x 0.48 mm
- Dot pitch: 0.52 x 0.52 mm
- Driving method: 1/64 duty, 1/9 bias
- Backlight: White ; Vf:4.0V ; If:60mA

4.0 DEFINITIONS OF TERMINALS

Pin No.	Symbol	Function
1	Vss	Ground
2	Vdd	Logic Power Supply
3	Vout	Booster Output Voltage
4	RES	Reset Terminal
5	CS	Chip Select Terminal
6	RS	Data or Command Terminal
7	R/W	Read / Write Terminal
8	E	Enable Terminal
9	DB0	Data Line Terminal
10	DB1	Data Line Terminal
11	DB2	Data Line Terminal
12	DB3	Data Line Terminal
13	DB4	Data Line Terminal
14	DB5	Data Line Terminal
15	DB6	Data Line Terminal
16	DB7	Data Line Terminal
17	Anode	Backlight Anode Terminal
18	Cathode	Backlight Cathode Terminal

5.0 BLOCK DIAGRAM

Timing Signal Display Data Logic Power Supply

6.0 MECHANICAL SPECIFICATIONS

Glass Overall View

1.00 1.70

Glass Drawing

7.0 POWER SUPPLY CIRCUITS

As this model was built in master mode then it is possible to control power consumption for liquid crystal drive. There are voltage converter circuits, voltage regulator circuits, and voltage follower circuits. Table below shows the referenced combinations in using power supply circuits.

Item	Sta "1"	itus "0"
D2 Booster circuit control bit	ON	OFF
D1 Voltage regulator circuit (V regulator circuit) control bit	ON	OFF
D0 Voltage follower circuit (V/F circuit) control bit	ON	OFF

Use Settings		D1	D0	Step-up circuit	V regulator circuit	V/F circuit	External voltage input	Step-up voltage system terminal
① Only the internal power supply is used	1	1	1	0	0	0	Vss2	Used
② Only the V regulator circuit and the V/F circuit are used	0	1	1	Х	0	0	Vout, Vss2	Open
③ Only the V/F circuit is used	0	0	1	X	Х	0	V5, VSS2	Open
④ Only the external power supply is used	0	0	0	Х	Х	Х	V1 to V5	Open

* The "step-up system terminals" refer CAP1+, CAP1–, CAP2+, CAP2–, and CAP3–.

While other combinations, not shown above, are also possible, these combinations are not recommended because they have no practical use.

The Step-up Voltage Circuits

Using the step-up voltage circuits equipped within the module chips it is possible to product a Triple step-up, and a Double step-up of the VDD – VSS2 voltage levels.

• Quad step-up: Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2-, between CAP1+ and CAP3-, and betweenVSS2 and VOUT, to produce a voltage level in the negative direction at the VOUT terminal that is 4 times the voltage level between VDD and VSS2.

• Triple step-up: Connect capacitor C1 between CAP1+ and CAP1-, between CAP2+ and CAP2- and between VSS2 and VOUT, and short between CAP3- and VOUT to produce a voltage level in the negative direction at the VOUT terminal that is 3 times the voltage difference between VDD and VSS2.

Reference Circuits

* The VSS2 voltage range must be set so that the VOUT terminal voltage does not exceed the absolute maximum rated value.

(4-Time V/C:ON, V/R:ON, V/F:ON)

The Voltage Regulator Circuit

The step-up voltage generated at VOUT outputs the liquid crystal driver voltage V5 through the voltage regulator circuit. Because the module driver chip have an internal high-accuracy fixed voltage power supply with a 64-level electronic volume function and internal resistors for the V5 voltage regulator, systems can be constructed without having to include high-accuracy voltage regulator circuit components. The selected thermal gradients Vreg approximately 0.05%

When the V5 Voltage Regulator Internal Resistors Are Used

Through the use of the V5 voltage regulator internal resistors and the electronic volume function the liquid crystal power supply voltage V5 can be controlled by commands alone (without adding any external resistors), making it possible to adjust the liquid crystal display brightness. The V5 voltage can be calculated using equation A-1 over the range where |V5| < |VOUT|.

Equipment Type	Thermal Gradient	Units	Vreg	Units
Internal Power Supply	-0.05	[%/°C]	-2.1	[V]

 α is set to 1 level of 64 possible levels by the electronic volume function depending on the data set in the 6-bit electronic volume register. Table 4 shows the value for α depending on the electronic volume register settings.

	D5	D4	D3	D2	D1	D0	α
Γ	0	0	0	0	0	0	63
	0	0	0	0	0	1	62
	0	0	0	0	1	0	61
							:
							•
	1	1	1	1	0	1	2
	1	1	1	1	1	0	1
L	1	1	1	1	1	1	0

Rb/Ra is the V5 voltage regulator internal resistor ratio, and can be set to 8 different levels through the V5 voltage regulator internal resistor ratio set command. The (1 + Rb/Ra) ratio assumes the values shown in Table 5 depending on the 3-bit data settings in the V5 voltage regulator internal resistor ratio register.

Register		er	Equipment Type by Thermal Gradient [Units: %/°C		
D2	D1	D0	-0.05	 VREG External Input 	
0	0	0	3.0	1.5	
0	0	1	3.5	2.0	
0	1	0	4.0	2.5	
0	1	1	4.5	3.0	
1	0	0	5.0	3.5	
1	0	1	5.4	4.0	
1	1	0	5.9	4.5	
1	1	1	6.4	5.0	

The Vs voltage as a function of the Vs voltage regulator internal resistor ratio register and the electronic volume register.

When an External Resistance is Used (i.e., The V5 Voltage Regulator Internal Resistors Are Not Used)

The liquid crystal power supply voltage V5 can also be set without using the V5 voltage regulator internal resistors (IRS terminal = LOW) by adding resistors Ra' and Rb' between VDD and VR, and between VR and V5, respectively. When this is done, the use of the electronic volume function makes it possible to adjust the brightness of the liquid crystal display by controlling the liquid crystal power supply voltage V5 through commands. In the range where |V5| < |VOUT|, the V5 voltage can be calculated using equation B-1 based on the external resistances Ra' and Rb'.

Setup example: When selecting Ta = 25 C and V5 = -7 V for the LCD module where the temperature gradient = $-0.05\%/^{\circ}$ C.

When the central value of the electron volume register is (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0), then $\alpha = 31$ and VREG = -2.1 V so, according to equation B-1,

$$V_5 = \left(1 + \frac{R\theta}{Ra'}\right) \cdot \left(1 - \frac{\alpha}{162}\right) \cdot V_{REG}$$

-11V = $\left(1 + \frac{R\theta}{Ra'}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot (-2.1)$ (Equation B-2)

Moreover, when the value of the current running through Ra' and Rb' is set to $5 \,\mu$ A,

Ra Rb M''. +=1 4 Ω (Equation B-3)

Consequently, by equations B-2 and B-3,

$$\frac{Rb}{Rd'} = 3.12$$

$$Rd = 340k\Omega$$

$$Rb' = 1060k\Omega$$

At this time, the V5 voltage variable range and notch width, based on the electron volume function, is as given in Table 6.

lin.	Тур.	Max.	Units
8.6 (63 levels)	–7.0 (central value)	-5.3 (0 level)	[V]
8	in. 5.6 (63 levels)	in. Typ. 3.6 (63 levels) –7.0 (central value) 52	in. Typ. Max. 3.6 (63 levels) –7.0 (central value) –5.3 (0 level) 52

When External Resistors are Used (i.e. The V5 Voltage Regulator Internal Resistors Are Not Used).

When the external resistor described above are used, adding a variable resistor as well makes it possible to perform fine adjustments on Ra' and Rb', to set the liquid crystal drive voltage V5. In this case, the use of the electronic volume function makes it possible to control the liquid crystal power supply voltage V5 by commands to adjust the liquid crystal display brightness. In the range where |V5| < |VOUT| the V5 voltage can be calculated by equation C-1 below based on the R1 and R2 (variable resistor) and R3 settings, where R2 can be subjected to fine adjustments ($\Delta R2$)..

Setup example: When selecting Ta = 25° C and V5 = -5 to -9 V (using R2) for the module where the temperature gradient = $-0.05\%/^{\circ}$ C.

When the central value for the electronic volume register is set at (D5, D4, D3, D2, D1, D0) = (1, 0, 0, 0, 0, 0),

$$\alpha = 31$$

V REG = -2 1 *V*.

so, according to equation C-1, when $\Delta R_2 = 0 \Omega$, in order to make V5 = -9 V,

$$-9V = \left(1 + \frac{R_3 + R_2}{R_1}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot (-2.1)$$
(Equation C-2)

 $-5V = \left(1 + \frac{R_3}{R_1 + R_2}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot (-2.1)$

(Equation C-3)

When $\Delta R_2 = R_2$, in order to make V = -5 V,

$$-5V = \left(1 + \frac{R_3}{R_1 + R_2}\right) \cdot \left(1 - \frac{31}{162}\right) \cdot (-2.1)$$
(Equation C-3)

Moreover, when the current flowing VDD and V5 is set to 5 μ A,

$$R_1 + R_2 + R_3 = 1.4M\Omega$$
 (Equation C-4)

With this, according to equation C-2, C-3 and C-4,

$$R_1 = 264k\Omega$$

 $R_2 = 211k\Omega$
 $R_3 = 925k\Omega$

At this time, the V5 voltage variable range and notch width based on the electron volume function is as shown in Table 7.

V5	Min.	Тур.	Max.	Units
Variable Range	-8.7 (63 levels)	–7.0 (central value)	-5.3 (0 level)	[V]
Notch width		53		[mV]

Reference Circuits

When used all of the step-up circuit, voltage regulating circuit and V/F circuit

When the voltage regulator internal resistor is used. (Example where VSS2 = VSS, with 3x step-up)

When the voltage regulator circuit and V/F circuit alone are used

When the V5 voltage regulator internal resistor is used.

When the V/F circuit alone is used

Examples of shared reference settings, When V5 can vary between -8 and 12 V

When the built-in power circuit is used to drive a liquid crystal panel heavily loaded with AC or DC, it is recommended to connect an external resistor to stabilize potentials of V1, V2, V3 and V4 which are output from the built-in voltage follower.

ltem	Set value	Units
C1	1.0 to 4.7	μF
C2	0.01 to 1.0	μ⊢

8.0 MODULE FUNCTIONS

Parallel Interface

With the configured module chip, data transfers are done through an 8-bit bi-directional data bus (D7 to D0).

Moreover, data bus signals are recognized by a combination of A0, E, R/W signals, as shown in Table 9.

	680	0 Series	Frankland
A0	R/W	E	Function
1	1	0	Reads the display data
1	0	1	Writes the display data
0	1	0	Status read
0	0	1	Write control data (command)

Accessing the Display Data RAM and the Internal Registers

Data transfer at a higher speed is ensured since the MPU is required to satisfy the cycle time (tCYC) requirement alone in accessing the module chip. Wait time may not be considered. And, in the module chip, each time data is sent from the MPU, a type of pipeline process between LSIs is performed through the bus holder attached to the internal data bus. For example, when the MPU writes data to the display data RAM, once the data is stored in the bus holder, then it is written to the display data RAM before the next data write cycle. Moreover, when the MPU reads the display data RAM, the first data read cycle (dummy) stores the read data in the bus holder, and then the data is read from the bus holder to the system bus at the next data read cycle. There is a certain restriction in the read sequence of the display data RAM. Please be advised that data of the specified address is not generated by the read instruction issued immediately after the address setup. This data is generated in data read of the second time. Thus, a dummy read is required whenever the address setup or write cycle operation is conducted. This relationship is shown in Figure 2.

The Busy Flag

When the busy flag is "1" it indicates that the module chip is running internal processes, and at this time no command aside from a status read will be received. The busy flag is outputted to D7 pin with the read instruction. If the cycle time (tCYC) is maintained, it is not necessary to check for this flag before each command. This makes vast improvements in MPU processing capabilities possible.

Reading

9.0 DISPLAY DATA RAM

Display Data RAM

The display data RAM is a RAM that stores the dot data for the display. It has a 65 (4 page X8 bit +1) X132 bit structure. It is possible to access the desired bit by specifying the page address and the column address. Because, as is shown in Figure 3, the D7 to D0 display data from the MPU corresponds to the liquid crystal display common direction. Moreover, reading from and writing to the display RAM from the MPU side is performed through the I/O buffer, which is an independent operation from signal reading for the liquid crystal driver. Consequently, even if the display data RAM is accessed asynchronously during liquid crystal display, it will not cause adverse effects on the display (such as flickering).

The Page Address Circuit

As shown in Figure 15, page address of the display data RAM is specified through the Page Address Set Command. The page address must be specified again when changing pages to perform access.

The Column Addresses

As is shown in Figure 15, the display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously. Moreover, the incrementation of column addresses stops with 83H but the display can only be seen column addresses with 78H 9(ADC"0") and only start to show display with column addresses OCH with ADC "1" . Because the column address is independent of the page address, when moving, for example, from page 0 column 83H to page 1 column 00H, it is necessary to respecify both the page address and the column address. Furthermore, as is shown in Table 10, the ADC command (segment driver direction select command) can be used to reverse the relationship between the display data RAM column address and the segment output. The Column addresses of the ADC select must carefully concern to avoid improper display pattern. (see approval drawing)

SEG Output	SEG0		SEG 131
ADC "0" (D0) "1"	$\begin{array}{c} 0 \ (H) \rightarrow \\ 83 \ (H) \leftarrow \end{array}$	Column Address Column Address	$\begin{array}{l} \rightarrow 83~(H) \\ \leftarrow 0~(H) \end{array}$

The Line Address Circuit

The line address circuit, as shown in Table 11, specifies the line address relating to the COM output when the contents of the display data RAM are displayed. Using the display start line address set command, what is normally the top line of the display can be specified. (this is the COM0 output when the common output mode is normal, and the COM33 line area for the module chip . If the line addresses are changed dynamically using the display start line address set command, screen scrolling, page swapping, etc. can be performed.

The Common Output Status Select Circuit

In this module, the COM output scan direction can be selected by the common output status select command (See Table 11).

Status	COM Scan Direction
Normal	$COM0 \rightarrow COM31$
Reverse	$COM31 \rightarrow COM6$

10.0 LCD DISPLAY CONTROL

(1) Display ON/OFF

This command turns the display ON and OFF.

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	1	1	1	1 0	Display ON Display OFF

When the display OFF command is executed when in the display all points ON mode, power saver mode is entered. See the section on the power saver for details.

(2) Display Start Line Set

This command is used to specify the display start line address of the display data RAM shown in Figure 18. For further details see the explanation of this function in "The Line Address Circuit".

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Line address
0	1	0	0	1	0	0	0	0	0	0	0
					0	0	0	0	0	1	1
					0	0	0	0	1	0	2
							,	Ļ			\downarrow
					1	1	1	1	1	0	62
					1	1	1	1	1	1	63

(3) Page Address Set

This command specifies the page address corresponding to the low address when the MPU accesses the display data RAM (see Figure 18). Specifying the page address and column address enables to access a desired bit of the display data RAM. Changing the page address does not accompany a change in the status display.

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Page address
0	1	0	1	0	1	1	0	0	0	0	0
							0	0	0	1	1
							0	0	1	0	2
								,	Ļ		↓
							0	1	0	0	4

(4) Column Address Set

This command specifies the column address of the display data RAM shown in Figure 18. The column address is split into two sections (the higher 4 bits and the lower 4 bits) when it is set (fundamentally, set continuously). Each time the display data RAM is accessed, the column address automatically increments (+1), making it possible for the MPU to continuously read from/write to the display data. The column address increment is topped at 83H. This does not

change the page address continuously. See the function explanation in "The Column Address Circuit," for details.

	A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	A7	A 6	A5	A4	A 3	A2	A1	A0	Column address
$\begin{array}{l} \text{HIGH bits} \rightarrow \\ \text{LOW bits} \rightarrow \end{array}$	0	1	0	0	0	0	1 0	А7 А3	A6 A2	А5 А1	A4 A0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 1	0 1 0	0 1 2
	\downarrow	\downarrow										1 1	0 0	0 0	0 0	0 0	0 0	1 1	0 1	130 131

(5) Status Read

A0	E	R/W 1	D7 BUSY	D6 ADC	D5 ON/OFF	D4 RESET	D3	D2 0	D1 0	D0				
BUS	Υ	Whe is in be s	en BUSY = process. \ atisfied, th	= 1, it indi While the ere is no	cates that e chip does need to ch	either proc not accep neck for Bl	cessin t com USY (ig is (iman condi	occur ds un tions	ring i ntil BU	nternally SY = 0,	or a res f the cy	et conditior cle time ca	n in
ADC		This (shows the): Reverse 1: Normal The ADC	e relation (column (column a comman	ship betwe address 13 address n ∢ d switches	en the col 31-n ↔ Sl → SEG n) the polarit	umn a EG n) ty.)	addre	ess ai	nd the	e segmer	ıt driver.		
ON/	OFF	ON/ (OFF: indic): Display 1: Display This displ	ates the ON OFF ay ON/Of	display ON FF commar	/OFF stat	e. es the	pola	rity.)					
RES	ΕT	This beca (indicates ause of a r): Operatir 1: Reset in	that the o reset com ng state i progress	chip is in th mand.	e process	of ini	tializa	ation	eithe	becaus	e of a Ri	ES signal o	or

(6) Display Data Write

This command writes 8-bit data to the specified display data RAM address. Since the column address is automatically incremented by "1" after the write, the MPU can write the display data.

A 0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0
1	1	0			V	Vrite	data	a		

(7) Display Data Read

This command reads 8-bit data from the specified display data RAM address. Since the column address is automatically incremented by "1" after the read, the CPU can continuously read multiple-word data. One dummy read is required immediately after the column address has

been set. See the function explanation in "Display Data RAM" for the explanation of accessing the internal registers. When the serial interface is used, reading of the display data becomes unavailable.

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0
1	0	1			F	lead	Dat	а		

(8) ADC Select (Segment Driver Direction Select)

This command can reverse the correspondence between the display RAM data column address and the segment driver output. Thus, sequence of the segment driver output pins may be reversed by the command. See the column address circuit (figure 18) for the detail. Increment of the column address (by "1") accompanying the reading or writing the display data is done according to the column address indicated in Figure 15.

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	0	0	0 1	Normal Reverse

(9) Display Normal/Reverse

This command can reverse the lit and unlit display without overwriting the contents of the display data RAM. When this is done the display data RAM contents are maintained.

A0	Е	R/W:	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	1	0 1	RAM Data HIGH LCD ON voltage (normal) RAM Data LOW LCD ON voltage (reverse)

(10) Display All Points ON/OFF

This command makes it possible to force all display points ON regardless of the content of the display data RAM. The contents of the display data RAM are maintained when this is done. This command takes priority over the display normal/reverse command. When the display is in an OFF mode, executing the display all points ON command will place the display in power save mode. For details, see the Power Save section.

A 0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Setting
0	1	0	1	0	1	0	0	1	0	0 1	Normal display mode Display all points ON

(11) LCD Bias Set

This command selects the voltage bias ratio required for the liquid crystal display. This command can be valid while the V/F circuit of Power Supply circuit is in operation.

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Select Status
0	1	0	1	0	1	0	0	0	1	0 1	1/6 bias 1/5 bias

(12) Read/Modify/Write

This command is used paired with the "END" command. Once this command has been input, the display data read command does not change the column address, but only the display data write command increments (+1) the column address. This mode is maintained until the END command is input. When the END command is input, the column address returns to the address it was at when the read/modify/write command was entered. This function makes it possible to reduce the load on the MPU when there are repeating data changes in a specified display region, such as when there is a blanking cursor.

* Even in read/modify/write mode, other commands aside from display data read/write commands can also be used. However, the column address set command cannot be used.

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	0	0

(13) End

This command releases the read/modify/write mode, and returns the column address to the address it was at when the mode was entered.

(14) Reset

This command initializes the display start line, the column address, the page address, the common output mode, the V5 voltage regulator internal resistor ratio, the electronic volume, and the static indicator are reset, and the read/modify/ write mode and test mode are released. There is no impact on the display data RAM. See the function explanation in "Reset" for details. The reset operation is performed after the reset command is entered. The initialization when the power supply is applied must be done through applying a reset signal to the RES terminal. The reset command must not be used instead.

A 0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	1	1	0	0	0	1	0

(15) Common Output Mode Select

This command can select the scan direction of the COM output terminal. For details, see the function explanation in "Common Output Mode Select Circuit."

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Selected Mode
0	1	0	1	1	0	0	0 1	*	*	*	COM0→COM31 COM31→COM0

(16) Power Controller Set

This command sets the power supply circuit functions. See the function explanation in "The Power Supply Circuit," for details

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Selected Mode
0	1	0	0	0	1	0	1	0 1			Booster circuit: OFF Booster circuit: ON
									0 1		Voltage regulator circuit: OFF Voltage regulator circuit: ON
										0 1	Voltage follower circuit: OFF Voltage follower circuit: ON

(17) V5 Voltage Regulator Internal Resistor Ratio Set

This command sets the V5 voltage regulator internal resistor ratio. For details, see the function explanation is "The Power Supply Circuits."

/	40	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Rb/Ra Ratio
Г	0	1	0	0	0	1	0	0	0	0	0	Small
									0	0	1	
									0	1	0	
										\downarrow		\downarrow
									1	1	0	
L									1	1	1	Large

(18) The Electronic Volume (Double Byte Command)

This command makes it possible to adjust the brightness of the liquid crystal display by controlling the liquid crystal drive voltage V5 through the output from the voltage regulator circuits of the internal liquid crystal power supply. This command is a two byte command used as a pair with the electronic volume mode set command and the electronic volume register set command, and both commands must be issued one after the other.

The Electronic Volume Mode Set

When this command is input, the electronic volume register set command becomes enabled. Once the electronic volume mode has been set, no other command except for the electronic volume register command can be used. Once the electronic volume register set command has been used to set data into the register, then the electronic volume mode is released.

A 0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	1	0	0	0	0	0	0	1

• Electronic Volume Register Set

By using this command to set six bits of data to the electronic volume register, the liquid crystal drive voltage V5 assumes one of the 64 voltage levels. When this command is input, the electronic volume mode is released after the electronic volume register has been set. When the electronic volume function is not used, set this to (1, 0, 0, 0, 0)

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	V 5
0	1	0	*	*	0	0	0	0	0	1	Small
0	1	0	*	*	0	0	0	0	1	0	
0	1	0	*	*	0	0	0	0	1	1	
											\downarrow
0	1	0	*	*	1	1	1	1	1	0	
0	1	0	*	*	1	1	1	1	1	1	Large
											* 1

' Inactive bit

• The Electronic Volume Register Set Sequence Figure 26

(19) Static Indicator (Double Byte Command)

This command controls the static drive system indicator display. The static indicator display is controlled by this command only, and is independent of other display control commands. This is used when one of the static indicator liquid crystal drive electrodes is connected to the FR terminal, and the other is connected to the FRS terminal. A different pattern is recommended for the static indicator electrodes than for the dynamic drive electrodes. If the pattern is too close, it can result in deterioration of the liquid crystal and of the electrodes. The static indicator register set command, and thus one must execute one after the other. (The static indicator OFF command is a single byte command.)

Static Indicator ON/OFF

When the static indicator ON command is entered, the static indicator register set command is enabled. Once the static indicator ON command has been entered, no other command aside from the static indicator register set command can be used. This mode is cleared when data is set in the register by the static indicator register set command.

A0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0	Static Indicator
0	1	0	1	0	1	0	1	1	0	0 1	OFF ON

Static Indicator Register Set

This command sets two bits of data into the static indicator register, and is used to set the static indicator into a blinking mode.

A0	Е	R/ W :	D7	D6	D5	D4	D3	D2	D1	D0	Indicator Display State
0	1	0	*	*	*	*	*	*	0 0 1	0 1 0 1	OFF ON (blinking at approximately one second intervals) ON (blinking at approximately 0.5 second intervals) ON (constantly on)

* Disabled bit

• Static Indicator Register Set Sequence Figure 17

(20) Power Save (Compound Command)

When the display all points ON is performed while the display is in the OFF mode, the power saver mode is entered, thus greatly reducing power consumption. The power saver mode has two different modes: the sleep mode and the standby mode. When the static indicator is OFF, it is the sleep mode that is entered. When the static indicator is ON, it is the standby mode that is entered. In the sleep mode and in the standby mode, the display data is saved as is the operating mode that was in effect before the power saver mode was initiated, and the MPU is still able to access the display data RAM. Refer to figure 28 for power save off sequence. Figure 22

Sleep Mode

This stops all operations in the LCD display system, and as long as there are no accesses from the MPU, the consumption current is reduced to a value near the static current. The internal modes during sleep mode are as follows:

1 The oscillator circuit and the LCD power supply circuit are halted.

2 All liquid crystal drive circuits are halted, and the segment in common drive outputs output a VDD level.

Standby Mode

The duty LCD display system operations are halted and only the static drive system for the indicator continues to operate, providing the minimum required consumption current for the static drive. The internal modes are in the following states during standby mode.

1 The LCD power supply circuits are halted. The oscillator circuit continues to operate.

2 The duty drive system liquid crystal drive circuits are halted and the segment and common driver outputs output a VDD level. The static drive system does not operate.

When a reset command is performed while in standby mode, the system enters sleep mode.

* When an external power supply is used, it is recommended that the functions of the external power supply circuit be stopped when the power saver mode is started. For example, when the various levels of liquid crystal drive voltage are provided by external resistive voltage dividers, it is recommended that a circuit be added in order to cut the electrical current flowing through the resistive voltage divider circuit when the power saver mode is in effect. The S1D15605 series chips have a liquid crystal display blanking control terminal DOF. This terminal enters an LOW state when the power saver mode is launched. Using the output of DOF, it is possible to stop the function of an external power supply circuit.

* When the master is turned on, the oscillator circuit is operable immediately after the powering on.

(21) NOP

Non-Operation Command

	A 0	Е	R/W	D7	D6	D5	D4	D3	D2	D1	D0
ſ	0	1	0	1	1	1	0	0	0	1	1

11. COMMAND SAMPLE SEQUENCE

					Command Code								
	Command	A0	RD	WR	D7	D6	□5	04	DS	D2	01	D0	Furgion
(1)	Display ON/OFF	D	1	D	1	D	1	D	1	1	1	D 1	LCE display ON/OFF D: OFF, 1: ON
(2)	Display start line set	D	1	D	D	1		⊡sp	lay sta	at add	ress		Sets the display RAW clisplay start line address
(3)	Page address set	D	1	D	1	D	1	1	F	age s	citires	5	Sets the clisplay RAW page
(4)	Column address set upper bit	D	1	D	D	D	۵	1	N	Most significant column address		tt is	Sets the most significant 4 bits of the display RAW column
	Column address set lower bit	D	1	D	D	D	۵	D	Least significant column address			nt s	Sets the least significant 4 bits of the display RAM column address.
(5)	Status read	D	D	1		Sta	atus		D	0	D	D	Reads the status claim
(6)	🗆 isplay data write	1	1	D				With	data				Writes to the display RAM
(T)	□ Isplay data read	1	D	1				Read	data				Reads from the display RAM
(B)	ADC select	D	1	D	1	D	1	D	D	٥	D	D 1	Sets the display RAW address SEG output correspondence D: normal, 1: reverse
(9)	Display normal/ ravatsa	D	1	D	1	D	1	D	D	1	1	D 1	Sets the LCD display normal/ reverse D: normal, 1: reverse
(1D)	Display all points ON/DFF	D	1	D	1	D	1	D	D	1	D	D 1	Display all points 0: normal display 1: all points ON
[11)	LCD bias set	D	1	D	1	D	1	D	D	a	1	D 1	D: 1/6. 1: 1/5
[12)	Readmodity/orfe	D	1	D	1	1	1	D	D	٥	D	D	Column address increment At units: +1 At read: 0
(13)	End	D	1	D	1	1	1	D	1	1	1	D	Clear read mod ly/write
(14)	Reset	D	1	D	1	1	1	D	D	0	1	D	internal raset
(15)	Common output mode select	D	1	D	1	1	٥	D	D 1		•		Select COW output scan cirection 0: normal direction.
													1: reverse ditection
(16)	Power control set	D	1	D	D	D	1	D	1	0	peratin mode	9	Select internal power supply operating mode
(17)	Vs voltage regulator internal resistor ratio set	D	1	D	D	D	1	D	D	Re	sistor n	atio	Select internal resistor tabo (Rb(Ra) mode
(1B)	Electronic volume mode set	D	1	D	1	D	۵	D	D	۵	D	1	
	Electronic volume register set	D	1	D	•	•		Electr	onic v	oluma	value		Set the Vs output voltage electronic volume register
(19)	Static Indicator	D	1	D	1	D	1	D	1	1	D	D	D: OFF, 1: ON
	Static Indicator register set	D	1	D	•	•	•	•			Mo	de	Set the flashing mode
(20)	Powersaver												Display OFF and clisplay all points DN compound command
(21)	NOP	D	1	D	1	1	1	D	D	ũ	1	1	Command for non-operation
(22)	Test	D	1	D	1	1	1	1			•	•	Command for IC test. Do not use this command

(Note) *: disablecidate

12.0 COMMAND DESCRIPTION

Instruction Setup: Reference (reference)

Initialization:

Note: With this IC, when the power is applied, LCD driving non-selective potentials V2 and V3 (SEG pin) and V1 and V4 (COM pin) are output through the LCD driving output pins SEG and COM. When electric charge is remaining in the smoothing capacitor connecting between the LCD driving voltage output pins (V1 \sim V5) and the VDD pin, the picture on the display may become totally dark instantaneously when the power is turned on. To avoid occurrence of such a failure, we recommend the following flow when turning on the power.

1. When the built-in power is being used immediately after turning on the power:

* The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.

Notes: Refer to respective sections or paragraphs listed below.

*1: 6. Description of functions; "Resetting circuit" (If takes not more than 2 ms from Power Supply ON to the stability of internal oscillating circuit.)

- *2: 7. Command description; "(11) LCD bias setting"
- *3: 7. Command description; "(8) ADC selection"

*4: 7. Command description; "(15) Common output state selection"

*5: 6. Description of functions; "Power circuit" & Command description; "(17) Setting the

built-in resistance radio for regulation of the V5 voltage"

*6: 6. Description of functions; "Power circuit" & Command description; "(18) Electronic volume control"

*7: 6. Description of functions; "Power circuit" & Command description; "(16) Power control setting"

2. When the built-in power is not being used immediately after turning on the power:

* The target time of 5ms will result to vary depending on the panel characteristics and the capacitance of the smoothing capacitor. Therefore, we suggest you to conduct an operation check using the actual equipment.

Notes: Refer to respective sections or paragraphs listed below.

*1: 6. Description of functions; "Resetting circuit" (The contents of DDRAM can be variable even in the

initial setting (Default) at the reset state.)

*2: 7. Command description; "(11) LCD bias setting"

*3: 7. Command description; "(8) ADC selection"

*4: 7. Command description; "(15) Common output state selection"

*5: 6. Description of functions; "Power circuit" & "(17) Command description; Setting the built-in

resistance radio for regulation of the V5 voltage"

*6: 6. Description of functions; "Power circuit" & "(18) Command description; Electronic volume control"

*7: 6. Description of functions; "Power circuit" & "(16) Command description; Power control setting"

*8: 7. The power saver ON state can either be in sleep state or stand-by state.

Command description; "Power saver START (multiple commands)"

Data Display

Notes: Reference items

- *9: Command Description; Display start line set
- *10: Command Description; Page address set
- *11: Command Description; Column address set
- *12: Command Description; Display data write
- *13: Command Description; Display ON/OFF Avoid displaying all the data at the data display start (when the display is ON) in white.

Power OFF *14

*14: The logic circuit of this IC's power supply VDD - VSS controls the driver of the LCD power supply VDD - V5. So, if the power supply VDD - VSS is cut off when the LCD power supply VDD - V5 has still any residual voltage, the driver (COM. SEG) may output any uncontrolled voltage. When turning off the power, observe the following basic procedures:

• After turning off the internal power supply, make sure that the potential V5 ~ V1 has become below the threshold voltage of the LCD panel, and then turn off this IC's power supply (VDD - VSS).

6. Description of Function, 6.7 Power Circuit

*15: After inputting the power save command, be sure to reset the function using the RES terminal until the

power supply VDD - VSS is turned off. 7. Command Description (20) Power Save

*16: After inputting the power save command, do not reset the function using the RES terminal until the

power supply VDD - VSS is turned off. 7. Command Description (20) Power Save

Refresh

It is recommended that the operating modes and display contents be refreshed periodically to prevent the effect of unexpected noise

Precautions on Turning off the power

Observe Paragraph 1) as the basic rule.

<Turning the power (VDD - VSS) off>

1) Power Save (The LCD powers (VDD - V5) are off.) \rightarrow rearrange input \rightarrow Power (VDD - VSS) OFF

• Observe tL > tH.

• When tL < tH, an irregular display may occur.

Set tL on the MPU according to the software. tH is determined according to the external capacity C2 (smoothing capacity of V5 \sim V1) and the driver's discharging capacity.

<Turning the power (VDD - VSS) off : When command control is not possible.> 2) Reset (The LCD powers (VDD - VSS) are off.) \rightarrow Power (VDD - VSS) OFF

• Observe tL > tH.

• When tL < tH, an irregular display may occur.

For tL, make the power (VDD - VSS) falling characteristics longer or consider any other method. tH is determined according to the external capacity C2 (smoothing capacity of V5 to V1) and the driver's discharging capacity.

<Reference Data>

V5 voltage falling (discharge) time (tH) after the process of operation \rightarrow power save \rightarrow reset. V5 voltage falling (discharge) time (tH) after the process of operation \rightarrow reset.

• In case of other models than the above

<Turning the power (VDD - VSS) off>

Power save (The LCD powers (VDD - VSS) are off.) -> Power (VDD - VSS) OFF • Observe tL > tH.

• When tL < tH, an irregular display may occur.

Set tL on the MPU according to the software. tH is determined according to the external capacity C (smoothing capacity of V5 to V1) and the external resisters Ra + Rb (for V5 voltage regulation)

13.0 Absolute Maximum Rating

Parameter	Symbol	Rating	Unit	
Supply voltage range	VDD	-0.3 to 7.0	V	
Operating temperature Range	T _{OPR}	-20 to +70	°C	
Storage temperature Range	T _{STG}	-30 to +80	°C	

14.0 DC Module Electrical Characteristics

No	Item	Symbol	Condition	Min	Тур	Max	Unit
1.	Operating voltage	V _{DD}	-	2.7	3.0	3.6	V
2.	Power Supply Current	I _{OP}	-	-	500	900	uA
3.	LCD Driving Voltage	V _{LCD}	V5 - V _{DD}	-	9.0±5%	-	V

15.0 SYSTEM BUS READ/WRITE CHARACTERISTICS (8080)

(VDD = 2.7 V to 3.6 V, Ta = -40 to 85°C,										
ltom	Signal	Symbol	Condition	Rat	ing	Unite				
item	Signai	Symbol	Condition	Min.	Max.	onita				
Address hold time	AO	tans 🛛		0	_	ns				
Address setup time		1AW8		0	—	ns				
System cycle time 1	AO	TCYCLA		300	_	ns				
System cycle time 2		tсусна		300	—	ns				
Control LOW pulse width (Write)	WR	İ CCLW		60	_	ns				
Control LOW pulse width (Read)	RD	İ CCLR		120	_	ns				
Control HIGH pulse width (Write)	WR	İCCHW		60	—	ns				
Control HIGH pulse width (Read)	RD	İCCHR		60	_	ns				
Data setup time	D0 to D7	tosa		40	_	ns				
Data hold time		tdha		15	—	ns				
RD access time		tacca	CL = 100 pF	_	140	ns				
Output disable time		tons		10	100	ns				

(100 - 20 10 20 1, 10 - 10 10 20 2)

			(VDD = 2	.4 V to 3.0	V, Ta = -4	0 to 85°C)
ltom	Signal	Symbol	Condition	Rat	ting	Unite
Ren	Signal	Symbol	condition	Min.	Max.	onita
Address hold time	AO	tana		0	_	ns
Address setup time		1AW8		0	—	ns
System cycle time 1	AO	TCACT8		450	_	ns
System cycle time 2		TCACHB		450	—	ns
Control LOW pulse width (Write)	WR	toolw		90	_	ns
Control LOW pulse width (Read)	RD	TCCLR		180	—	ns
Control HIGH pulse width (Write)	WB	t CCHW		90	—	ns
Control HIGH pulse width (Read)	RD	ICCHR		90	_	ns
Data setup time	D0 to D7	tosa		60	—	ns
Data hold time		tdha		20	—	ns
RD access time		TACC8	CL = 100 pF	_	230	ns
Output disable time		tona		10	150	ns

(Vpp = 1.8 V to 2.4 V, Ta = -40 to 8								
ltom	Signal	Symbol	Condition	Rat	ing	Unite		
Ren	Signal	Symbol	Condition	Min.	Max.	onits		
Address hold time	AO	tana		0	_	ns		
Address setup time		tawa		0	—	ns		
System cycle time 1	AO	TCYCL8		600	_	ns		
System cycle time 2		TCACH8		600	—	ns		
Control LOW pulse width (Write)	WB	toolw		120	_	ns		
Control LOW pulse width (Read)	RD	TCCLR		240	-	ns		
Control HIGH pulse width (Write)	WB	teenw		120	-	ns		
Control HIGH pulse width (Read)	RD	ICCHR		120	—	ns		
Data setup time	D0 to D7	tosa		80	—	ns		
Data hold time		tdh8		30	—	ns		
RD access time		TACCB	CL = 100 pF	-	280	ns		
Output disable time		tona		10	200	ns		

*1 This is in the case of making the access by WR and RD, setting the CS1=LOW.

*2 This is the case of making the accese by CS1, setting the WR, RD=LOW.

*3 The rise and fall times (tr and tf) of the input signal are specified for less than 15 ns. When using the

system cycle time at high speed, they are specified for (tr + tf) (tCYC8-tCCLR-tCCHR).

*4 All timings are specified based on the 20 and 80% of VDD.

*5 tCCLW and tCCLR are specified for the overlap period when CS1 is at LOW (CS2=HIGH) level and

(VDD = 2.7 V to 3.6 V, Ta = -40 to 8								
ltom		Signal	Symbol	Condition	Rat	Unite		
nem		Signai	Symbol	Condition	Min.	Max.	onits	
Address hold time Address setup time		AO	tah6 taws		00		ns ns	
System cycle time 1 System cycle time 2		AO	toyons toyols		300 300		ns ns	
Data setup time Data hold time		D0 to D7	tose tone		40 15	_	ns ns	
Access time Output disable time			tacos tons	CL = 100 pF	 10	140 100	ns ns	
Enable HIGH pulse time	Read Write	E	tewhr tewhw		120 60		ns ns	
Enable LOW pulse time	Read Write	E	tewlr tewlw		60 60		ns ns	

(VDD =	2,4 V	to 3.0	V, Ta	= -40 to	85°C

Itom		Cignel	Cumbol	Condition	Rat	ing	Unite
nem		Signai	Symbol	Condition	Min.	Max.	onits
Address hold time Address setup time		AO	tans taws		00	_	ns ns
System cycle time 1 System cycle time 2		AO	tсусня tсусья		450 450	_	ns ns
Data setup time Data hold time		D0 to D7	tose tone		60 20	_	ns ns
Access time Output disable time			tacos tons	CL = 100 pF	10	230 150	ns ns
Enable HIGH pulse time	Read Write	E	tewhr tewhw		180 90	_	ns ns
Enable LOW pulse time	Read Write	E	tewlr tewlw		90 90	_	ns ns

				(VDD = 1	.8 V to 2.4	V, Ta = -4	0 to 85°C)
ltom		Cignal	Symbol	Condition	Rat	Units	
nem		Signal	Symbol	Condition	Min.	Max.	Units
Address hold time Address setup time		AO	tah6 taw6		0		ns ns
System cycle time 1 System cycle time 2		AO	tcychs tcycls		600 600	_	ns ns
Data setup time Data hold time		D0 to D7	tose tone		80 30		ns ns
Access time Output disable time			tacos tons	CL = 100 pF	10	280 200	ns ns
Enable HIGH pulse time	Read Write	E	tewhr tewhw		240 120		ns ns
Enable LOW pulse time	Read Write	E	tewlr tewlw		120 120	_	ns ns

*1 This is in the case of making the access by E, setting the CS1=LOW.

*2 This is the case of making the access by CS1, setting the E=HIGH.

*3 The rise and fall times ((tr and tf) of the input signal are specified for less than 15 ns.When using the

system cycle time at high speed, they are specified for (tr + tf) (tCYC6-tEWLW-tEWHW) or (tr + tf)

(tCYC6-tEWLR-tEWHR).

*4 All timings are specified based on the 20 and 80% of VDD.

*5 tEWLW and tEWLR are specified for the overlap period when CS1 is at LOW (CS2=HIGH) level and E

is at the HIGH level.

15.2 SERIAL INTERFACE

(VDD = 2.7 V to 3.6 V, Ta = -40 to 85°C)

ltom	Gianal	Signal Symbol	Condition	Rat	ting	Units
nem	Signal	Symbol	Condition	Min.	Max.	onits
Serial Clock Period SCL HIGH pulse width SCL LOW pulse width	SCL	tscyc tsHw tsLw		250 100 100		ns ns ns
Address setup time Address hold time	A0	tsas tsah		150 150		ns ns
Data setup time Data hold time	SI	tsos tson		100 100		ns ns
CS-SCL time	CS	toss tosh		150 150		ns ns

(VDU = 2.4 V 10 3.0 V, Ta = -40 10 65 °C)	(VDD = 2.4)	V to 3.0 V, Ta	= -40 to 85°C)
---	-------------	----------------	----------------

ltom	Signal Symbol		Condition	Rat	ting	Unite
nem	Signai	Symbol	Condition	Min.	Max.	onits
Serial Clock Period SCL HIGH pulse width SCL LOW pulse width	SCL	tscyc tshw tslw		300 125 125		ns ns ns
Address setup time Address hold time	AO	tsas tsah		200 200		ns ns
Data setup time Data hold time	SI	tsos tson		125 125		ns ns
CS-SCL time	CS	tcss tcsn		200 200	_	ns ns

Table 44

Item	Signal Symbol		Condition	Rat	Unite	
nem	Signal	Symbol	condition	Min.	Max.	onita
Serial Clock Period SCL HIGH pulse width SCL LOW pulse width	SCL	tscyc tshw tslw		400 150 150		ns ns ns
Address setup time Address hold time	AO	tsas tsan		250 250		ns ns
Data setup time Data hold time	SI	tsos tson		150 150		ns ns
CS-SCL time	CS	toss tosn		250 250	_	ns ns

 $(V_{DD} = 1.8 \text{ V to } 2.4 \text{ V}, \text{ Ta} = -40 \text{ to } 85^{\circ}\text{C})$

*1 The input signal rise and fall time (tr, tf) are specified at 15 ns or less. *2 All timing is specified using 20% and 80% of VDD as the standard.

Reset Input Timing

(VDD = 2.7 V to 4.5 V, Ta = -40 to 85°C)

Itom	Signal	Symbol	Condition		Rating		Unite
nem	Sigilai	Symbol	Condition	Min.	Тур.	Max.	Units
Reset time		tR		—	—	1	μs
Reset LOW pulse width	RES	trw		1	—	—	μs

(VDD = 1.8 V to 2.7 V, Ta = -40 to 85°C)

Item	Signal	Symbol	Condition		Rating		Unite
nem	orginar	Symbol	condition	Min.	Тур.	Max.	onits
Reset time		tR		—	—	1.5	μs
Reset LOW pulse width	RES	trw		1.5	—	—	μs

16.0 OPTICAL CHARACTERISTICS

1) LUMINANCE ON STATE

Measurement Condition: a) Room Temperature b)Static properties c) Frequency = 64Hz

Measure Result:

Luminance Max = 2.303cd/m2

2) LUMINANCE OFF STATE

Measurement Condition: a) Room Temperature b)Multiplex properties c) Frequency = 64Hz

Measure Result:

Luminance Max = 2.061cd/m2

3) CONTRAST RATIO (A NUMBER OF PIXELS)

Measurement Condition: a) Room Temperature b)Multiplex properties c) Frequency = 64Hz

Measure Result:

Contrast Ratio at Head on ($\theta = 0$) =3.2

4). CONTRAST RATIO AT HORIZONTAL(A NUMBER OF PIXELS)

Measurement Condition: a) Room Temperature b)Multiplex properties c) Frequency = 64Hz

Measure Result:

Contrast Ratio >=2 =-30°+28°

Measurement Condition: a) Room Temperature b)Multiplex properties c) Frequency = 64Hz

Measure Result:

Contrast Ratio >=2 =-34°+22°

6. RESPONSE TIME

Ton =241.18ms Toff =170.59ms

Measurement Condition: a) Room Temperature b)Multiplex properties c) Frequency = 64Hz

17.0 SAMPLE PROGRAMMING

<u>MPU = PIC16C74A</u> INITIALIZATION ROUTINE

			00149 ; s 00150 ; s	ETTING S1D15607D00E 1D15607D00b INIT	3	
			00151			
0035	30E2		00152	MOVLW	0XE2	
0036	00A2		00153	MOVWF	CMDO	
0037	21BC		00154	CALL	SEND C	
			00155			
0038	2106		00156	CALL	DELAY	
0050	2100		00150	CALL	DEDAT	
0020	2032		00157	MOLTER	0373.2	·DIAG 1 (0
0039	50A5		00158	MOVEW	OLAS	/BIAS 1/9
003A	00AZ		00159	MOVWF	CMDO	
003B	21BC		00160	CALL	SEND_C	
			00161			
003C	30A0		00162	MOVLW	0AX0	;ADC S1 -S132
003D	00A2		00163	MOVWF	CMDO	
003E	21BC		00164	CALL	SEND_C	
			00165			
003F	30C0		00166	MOVLW	0XC0	;SHL COM1 -COM64 C0
0040	00A2		00167	MOVWF	CMDO	
0041	21BC		00168	CALL	SEND C	
			00169			
0042	2025		00170	MOVIN	0725	DECITATOR SETECT
0042	0020		00170	MOUTHE	CMDO	TREGOLATOR SELECT
0043	00AZ		00171	MOVWF	CMDO C	
0044	21BC		00172	CALL	SEND_C	
			00173			
0045	21C6		00174	CALL	DELAY	
0046	21C6		00175	CALL	DELAY	
			00176			
0047	3081		00177	MOVLW	0X81	;REFERENCE VOLTAGE SELECT
0048	00A2		00178	MOVWF	CMDO	
0049	21BC		00179	CALL	SEND C	
			00180			
0044	2106		00181	CALL	DELAY	
004B	2106		00182	CALL	DELAY	
0010	2100		00102	CALL	DIDAI	
0040	2020		00103	MOLITIN	0.220	COPERICIENT 2D
0040	302C		00104	MOVEW	UAZC	COEFFICIENT 2D
004D	UUAZ		00185	MOVWF	CMDO	
004E	21BC		00186	CALL	SEND_C	
			00187			
004F	21C6		00188	CALL	DELAY	
0050	21C6		00189	CALL	DELAY	
			00190			
0051	302C		00191	MOVLW	0X2C	;VC ON, VR OFF, VF OFF
0052	00A2		00192	MOVWF	CMDO	
0053	21BC		00193	CALL	SEND C	
			00194			
0054	2106		00195	CALL	DELAY	
0055	2106		00196	CALL	DELAY	
0055	2100		00190	CALL	DEDAT	
001	9MPASM	02.80 1	Released	5184PAR2.ASM	1-27-2003	21:16:43 PAGE 5
tog	ODTECT	CODE	TTNE COUDC	ייעקיי קו		
100	UDULCI	CODE	LINE SOURC			
VAL	UE					
0056	302E		00198	MOVLW	0X2E	;VC ON, VR ON, VF OFF
0057	00A2		00199	MOVWF	CMDO	
0058	21BC		00200	CALL	SEND_C	
			00201			
0059	21C6		00202	CALL	DELAY	
005A	21C6		00203	CALL	DELAY	
			00204			
0055	2025		00005	MOTH H	07707	ING ON UP ON UP ON

00JA	2100	00205	CAUL	DEDRI	
		00204			
005B	302F	00205	MOVLW	0X2F	;VC ON, VR ON, VF ON
005C	00A2	00206	MOVWF	CMDO	
005D	21BC	00207	CALL	SEND_C	
		00208			
005E	21C6	00209	CALL	DELAY	
005F	21C6	00210	CALL	DELAY	
		00211			
0060	3040	00212	MOVLW	0X40	; INITIAL DISPLAY LINE
0061	00A2	00213	MOVWF	CMDO	
0062	21BC	00214	CALL	SEND_C	
		00215			
0063	30B0	00216	MOVLW	0XB0	; PAGE
0064	00A2	00217	MOVWF	CMDO	
0065	21BC	00218	CALL	SEND_C	
		00219			
0066	3010	00220	MOVLW	0X10	;COL ADDR
0067	00A2	00221	MOVWF	CMDO	
0068	21BC	00222	CALL	SEND_C	
		00223			
0069	3000	00224	MOVLW	0X00	
006A	00A2	00225	MOVWF	CMDO	
006B	21BC	00226	CALL	SEND_C	
				-	

;DISPLAY ON

		00227		
006C	30AF	00228	MOVLW	OXAF
006D	00A2	00229	MOVWF	CMDO
006E	21BC	00230	CALL	SEND_C
		00231		
		00232		

SUBROUTINE

			00536							
;****	*****	*******	*****	* * * * * * * * * * * * * * * *	*****					
			00707	;SUBROUTINE DISE	PLAY					
			00708	;SEND COMMAND						
			00709	; * * * * * * * * * * * * * * *	*******	******	* * * * * * * * * * * * *	* * * * *		
			00710							
01B2			00711	SEND_D						
01B2	1106		00712		BCF	PORTB, RU	Ŵ	;	WRITE	DATA
01B3	1409		00713		BSF	PORTE, A	D			
01B4	1486		00714		BSF	PORTB,E				
01B5	1286		00715		BCF	PORTB,CS	S1B			
01B6	0824		00716		MOVF	DATAO,W				
01B7	0088		00717		MOVWF	LCD_DATA	A			
01B8	1686		00718		BSF	PORTB, CS	S1B			
01B9	1086		00719		BCF	PORTB,E				
01BA	1506		00720		BSF	PORTB, RV	W			
01BB	0008		00721		RETURN					
MPASM	02.80	Released		5184PAR2.ASM	1-27-200	3 21:10	5:43	PAGE	15	

LOC	OBJECT	CODE LIN	IE SOURCE TEXT				
VA	LUE						
		0.0	1722				
		0.0	1723				
		0.0	724 ;***************	*******	* * * * * * * * * * * * * * * * * * * *	* *	
		0.0	1725 ;	SEND_D S	SUBROUTINE		
		0.0	1726 ;***************	*******	* * * * * * * * * * * * * * * * * * * *	* *	
		0.0	1727				
01BC		0.0	728 SEND_C				
01BC	1106	0.0	1729	BCF	PORTB, RW	; WRITE	COMMAND
01BD	1009	0.0	1730	BCF	PORTE, A0		
01BE	1486	0.0	0731	BSF	PORTB,E		
01BF	1286	0.0	1732	BCF	PORTB,CS1B		
01C0	0822	0.0	1733	MOVF	CMDO,W		
01C1	0088	0.0	1734	MOVWF	LCD_DATA		
01C2	1689	0.0	735	BSF	PORTE,CS1B		
01C3	1086	0.0	736	BCF	PORTB, E		
01C4	1506	0.0	1737	BSF	PORTB, RW		
01C5	0008	0.0	1738	RETURN			
		0.0	1739				
		0.0	740				

18.0 PRECAUTION FOR HANDLING LCM

Liquid Crystal Display (LCD)

LCD is made up of glass, organic sealant, organic fluid and polymer based polarizers. The following precautions should be taken when handling.

- b) Keep the temperature within the range of use and storage. Excessive temperature and humidity could cause polarization degradation, polarizer peel off or bubble.
- c) Do not contact the exposed polarizer with anything harder than HB pencil lead. To clean dust off the display surface, wipe gently with cotton, chamois or other soft material soaked in petroleum benzene.
- d) Wipe off saliva or water drops immediately. Contact with water over a long period of time may cause polarizer deformation or color fading, while an active LCD with water condensation on its surface will cause corrosion of ITO electrodes.
- e) Glass can be easily chipped or cracked from rough handling, especially at comers and edges.
- f) Do not drive LCD with DC voltage.
- g) Do not touch ITO on the contact pad and ITO traces around LSI without glove as it might cause distribution of contamination agents to the ITO.

Static Electricity

LCM contains CMOS LSI's and the same precaution for such devices should apply, namely

- a) The operator should be grounded when ever he/she comes into contact with the module. Never touch any of the conductive parts such as the interface terminals with any parts of the human body.
- b) The modules should be kept in antistatic bags or other containers to static for storage.
- c) Only the properly grounded soldering irons should be used.
- d) If an electric screwdriver is used, it should be well grounded and shielded from commutator spark.
- e) The normal static prevention measures should be observed for work clothes and working benches, the latter conductive (rubber) mat is recommended.

Operation

- a) The contrast can be adjusted by varying Gain and Potentiometer in the software.
- b) Driving voltage should be kept within specified range, excess voltage shortens display life.c) Response time increases with decrease in temperature.
- c) Response time increases with decrease in temperature.
- d) Display may turn black or dark blue at temperature above its operational range, this is (however not pressing on the viewing area) may cause the segments to appear "fractured"
- e) Mechanical disturbance during operation (such as pressing on the viewing area) may cause the segments to appear "fractured"

Storage

If any liquid leaks out of the damaged glass cell, wash off any human part that comes into contact with soap and water. Never swallow the fluid. The toxicity is extremely low but caution should be exercised at all time.

Limited Warranty

Unless otherwise agreed between Crystal Clear Technology and customer, Crystal Clear Technology will replace or repair any if its LCD and LCM which is found to be defective electrically and visually when inspected in accordance with Crystal Clear Technology acceptance standards, for a period of one year from date of shipment. Confirmation of such date shall be based on freight documents. The warranty liability of Crystal Clear Technology is limited to repair and/or replacement on the terms set forth above. Crystal Clear Technology will not be responsible for any subsequent or consequential events.