Data sheet acquired from Harris Semiconductor SCHS192B # CD54HC640, CD74HC640, CD54HCT640, CD74HCT640 # High-Speed CMOS Logic Octal Three-State Bus Transceiver, Inverting January 1998 - Revised May 2003 #### Features - · Buffered Inputs - · Three-State Outputs - Applications in Multiple-Data-Bus Architecture - Fanout (Over Temperature Range) - Standard Outputs...... 10 LSTTL Loads - Bus Driver Outputs 15 LSTTL Loads - Wide Operating Temperature Range . . . -55°C to 125°C - Balanced Propagation Delay and Transition Times - Significant Power Reduction Compared to LSTTL Logic ICs - HC Types - 2V to 6V Operation - High Noise Immunity: N_{IL} = 30%, N_{IH} = 30% of V_{CC} at V_{CC} = 5V - HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, V_{IL}= 0.8V (Max), V_{IH} = 2V (Min) - CMOS Input Compatibility, I_I \leq 1 μ A at V_{OL}, V_{OH} #### **Pinout** CD54HC640, CD54HCT640 (CERDIP) CD74HC640, CD74HCT640 (PDIP, SOIC) TOP VIEW # Description The 'HC640 and 'HCT640 silicon-gate CMOS three-state bidirectional inverting and non-inverting buffers are intended for two-way asynchronous communication between data buses. They have high drive current outputs which enable high-speed operation when driving large bus capacitances. These circuits possess the low power dissipation of CMOS circuits, and have speeds comparable to low power Schottky TTL circuits. They can drive 15 LSTTL loads. The 'HC640 and 'HCT640 are inverting buffers. The direction of data flow (A to B, B to A) is controlled by the DIR input. Outputs are enabled by a low on the Output Enable input (\overline{OE}) ; a high \overline{OE} puts these devices in the high impedance mode. # **Ordering Information** | PART NUMBER | TEMP. RANGE
(°C) | PACKAGE | |---------------|---------------------|--------------| | CD54HC640F3A | -55 to 125 | 20 Ld CERDIP | | CD54HCT640F3A | -55 to 125 | 20 Ld CERDIP | | CD74HC640E | -55 to 125 | 20 Ld PDIP | | CD74HC640M | -55 to 125 | 20 Ld SOIC | | CD74HCT640E | -55 to 125 | 20 Ld PDIP | | CD74HCT640M | -55 to 125 | 20 Ld SOIC | # Functional Diagram #### **TRUTH TABLE** | CONTRO | L INPUTS | DATA PORT STATUS | | | | | |--------|----------|------------------|----------------|--|--|--| | ŌĒ | DIR | A _n | B _n | | | | | L | L | Ō | I | | | | | Н | Н | Z | Z | | | | | Н | L | Z | Z | | | | | L | Н | I | Ō | | | | To prevent excess currents in the High-Z modes all I/O terminals should be terminated with 1k Ω to 1M Ω resistors. H = High Level L = Low Level I = Input \overline{O} = Output (Inversion of Input Level) Z = High Impedance # **Absolute Maximum Ratings** # DC Supply Voltage, V $_{CC}$... -0.5V to 7V DC Input Diode Current, I $_{IK}$ For V $_{I}$ < -0.5V or V $_{I}$ > V $_{CC}$ + 0.5V ± 20 mA DC Output Diode Current, I $_{OK}$ For V $_{O}$ < -0.5V or V $_{O}$ > V $_{CC}$ + 0.5V ± 20 mA DC Drain Current, per Output, I $_{O}$ For -0.5V < V $_{O}$ < V $_{CC}$ + 0.5V ± 35 mA DC Output Source or Sink Current per Output Pin, I $_{O}$ For V $_{O}$ > -0.5V or V $_{O}$ < V $_{CC}$ + 0.5V ± 25 mA DC V $_{CC}$ or Ground Current, I $_{CC}$... ± 50 mA ## **Thermal Information** | Thermal Resistance (Typical, Note 1) | θ_{JA} (oC/W) | |--|----------------------| | E (PDIP) Package | 69 | | M (SOIC) Package | 58 | | Maximum Junction Temperature | 150 ⁰ C | | Maximum Storage Temperature Range | 65°C to 150°C | | Maximum Lead Temperature (Soldering 10s) | 300 ^o C | | (SOIC - Lead Tips Only) | | # **Operating Conditions** | Temperature Range, T _A 55°C to 125°C | |---| | Supply Voltage Range, V _{CC} | | HC Types2V to 6V | | HCT Types | | DC Input or Output Voltage, V _I , V _O 0V to V _{CC} | | Input Rise and Fall Time | | 2V | | 4.5V 500ns (Max) | | 6V | CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. #### NOTE: 1. The package thermal impedance is calculated in accordance with JESD 51-7. # **DC Electrical Specifications** | | | TE:
CONDI | | v _{cc} | 25°C | | | -40°C 1 | O 85°C | -55°C TO 125°C | | | | | |--------------------------|-----------------|------------------------------------|---------------------|-----------------|------|-----|------|---------|--------|----------------|------|-------|---|---| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | | | HC TYPES | | | | | | | | | | | | | | | | High Level Input | V _{IH} | - | - | 2 | 1.5 | - | - | 1.5 | - | 1.5 | - | V | | | | Voltage | | | | 4.5 | 3.15 | - | - | 3.15 | - | 3.15 | - | V | | | | | | | | 6 | 4.2 | - | - | 4.2 | - | 4.2 | - | V | | | | Low Level Input | V _{IL} | - | - | 2 | - | - | 0.5 | - | 0.5 | - | 0.5 | V | | | | Voltage | | | | 4.5 | - | - | 1.35 | - | 1.35 | - | 1.35 | V | | | | | | | | 6 | - | - | 1.8 | - | 1.8 | - | 1.8 | V | | | | High Level Output | VoH | V _{IH} or V _{IL} | -0.02 | 2 | 1.9 | - | - | 1.9 | - | 1.9 | - | V | | | | Voltage
CMOS Loads | | | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | | | Ower Education | | | -0.02 | 6 | 5.9 | - | - | 5.9 | - | 5.9 | - | V | | | | High Level Output | 7 | | | | - | - | - | - | - | - | - | - | - | V | | Voltage
TTL Loads | | | -6 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | | | 112 20000 | | | -7.8 | 6 | 5.48 | - | - | 5.34 | - | 5.2 | - | V | | | | Low Level Output | V _{OL} | V _{IH} or V _{IL} | 0.02 | 2 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | Voltage
CMOS Loads | | | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | Owied Educa | | | 0.02 | 6 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | | Low Level Output | 1 | | - | - | - | - | - | - | - | - | - | V | | | | Voltage
TTL Loads | | | 6 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | | | | 7.8 | 6 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | | Input Leakage
Current | II | V _{CC} or
GND | - | 6 | - | ı | ±0.1 | - | ±1 | - | ±1 | μА | | | # DC Electrical Specifications (Continued) | | | TEST
CONDITIONS | | V _{CC} | 25°C | | | -40°C TO 85°C | | -55°C TO 125°C | | | | |--|------------------------------|------------------------------------|---|-----------------|------|-----|------|---------------|------|----------------|-----|-------|--| | PARAMETER | SYMBOL | V _I (V) | I _O (mA) | (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 6 | - | - | 8 | - | 80 | - | 160 | μΑ | | | Three-State Leakage
Current | l _{OZ} | V _{IL} or V _{IH} | V _O =
V _{CC} or
GND | 6 | - | - | ±0.5 | - | ±5 | - | ±10 | μА | | | HCT TYPES | • | • | • | | | | | • | • | • | | | | | High Level Input
Voltage | V _{IH} | - | - | 4.5 to
5.5 | 2 | - | - | 2 | - | 2 | - | V | | | Low Level Input
Voltage | V _{IL} | - | - | 4.5 to
5.5 | - | - | 0.8 | - | 0.8 | - | 0.8 | V | | | High Level Output
Voltage
CMOS Loads | V _{OH} | V _{IH} or V _{IL} | -0.02 | 4.5 | 4.4 | - | - | 4.4 | - | 4.4 | - | V | | | High Level Output
Voltage
TTL Loads | | | -6 | 4.5 | 3.98 | - | - | 3.84 | - | 3.7 | - | V | | | Low Level Output
Voltage
CMOS Loads | V _{OL} | V _{IH} or V _{IL} | 0.02 | 4.5 | - | - | 0.1 | - | 0.1 | - | 0.1 | V | | | Low Level Output
Voltage
TTL Loads | | | 6 | 4.5 | - | - | 0.26 | - | 0.33 | - | 0.4 | V | | | Input Leakage
Current | lı | V _{CC} and
GND | 0 | 5.5 | - | - | ±0.1 | - | ±1 | - | ±1 | μА | | | Quiescent Device
Current | Icc | V _{CC} or
GND | 0 | 5.5 | - | - | 8 | - | 80 | - | 160 | μΑ | | | Three-State Leakage
Current | loz | V _{IL} or V _{IH} | V _O =
V _{CC} or
GND | 5.5 | - | - | ±0.5 | - | ±5 | - | ±10 | μА | | | Additional Quiescent
Device Current Per
Input Pin: 1 Unit Load | ΔI _{CC}
(Note 2) | V _{CC}
-2.1 | - | 4.5 to
5.5 | - | 100 | 360 | - | 450 | - | 490 | μА | | # NOTE: # **HCT Input Loading Table** | INPUT | UNIT LOADS | |-------|------------| | DIR | 0.9 | | ŌĒ, A | 1.5 | | В | 1.5 | NOTE: Unit Load is ΔI_{CC} limit specified in DC Electrical Table, e.g., $360\mu A$ max at $25^{o}C.$ ^{2.} For dual-supply systems theoretical worst case ($V_I = 2.4V$, $V_{CC} = 5.5V$) specification is 1.8mA. # **Switching Specifications** $C_L = 50pF$, Input t_r , $t_f = 6ns$ | | | TEST
CONDITIONS | | 25°C | | | | C TO
°C | -55°C TO
125°C | | | |--|-------------------------------------|-----------------------|---------------------|------|----------|----------|-----|------------|-------------------|----------|-------| | PARAMETER | SYMBOL | | V _{CC} (V) | MIN | TYP | MAX | MIN | MAX | MIN | MAX | UNITS | | HC TYPES | | | | | | | | | | | | | Propagation Delay | t _{PHL} , t _{PLH} | C _L = 50pF | | | | | | | | | | | A to \overline{B}
B to \overline{A} | | | 2 | - | - | 90 | - | 115 | - | 135 | ns | | 2.67.1 | | | 4.5 | - | - | 18 | - | 23 | - | 27 | ns | | | | C _L = 15pF | 5 | - | 7 | - | - | - | - | - | ns | | | | $C_L = 50pF$ | 6 | - | - | 15 | - | 20 | - | 23 | ns | | Output High-Z | t _{PHL} , t _{PLH} | $C_L = 50pF$ | 2 | 1 | - | 150 | - | 190 | - | 225 | ns | | To High Level,
To Low Level | | | 4.5 | - | - | 30 | - | 38 | - | 45 | ns | | | | C _L = 15pF | 5 | - | 12 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 26 | - | 33 | - | 38 | ns | | Output High Level | t _{PHZ} , t _{PLZ} | C _L = 50pF | 2 | - | - | 150 | - | 190 | - | 225 | ns | | Output Low Level to High Z | | | 4.5 | - | - | 30 | - | 38 | - | 45 | ns | | | | C _L = 15pF | 5 | - | 12 | - | - | - | - | - | ns | | | | C _L = 50pF | 6 | - | - | 26 | - | 33 | - | 38 | ns | | Output Transition Time | t _{THL} , t _{TLH} | C _L = 50pF | 2 | - | - | 60 | - | 75 | - | 90 | ns | | | | | 4.5 | - | - | 12 | - | 15 | - | 18 | ns | | | | | 6 | - | - | 10 | - | 13 | - | 15 | ns | | Input Capacitance | C _{IN} | C _L = 50pF | - | 10 | - | 10 | - | 10 | - | 10 | pF | | Three-State Output Capacitance | C _O | - | - | - | - | 20 | - | 20 | - | 20 | pF | | Power Dissipation Capacitance (Notes 3, 4) | C _{PD} | - | 5 | - | 38 | - | - | - | - | - | pF | | HCT TYPES | ! | | ! | | <u> </u> | <u> </u> | | | <u> </u> | <u> </u> | | | Propagation Delay | | | | | | | | | | | | | A to B | t _{PHL} , t _{PLH} | C _L = 50pF | 4.5 | - | - | 22 | - | 28 | - | 33 | ns | | B to Ā | | C _L = 15pF | 5 | - | 9 | - | - | - | - | - | ns | | Output High-Z | t _{PHL} , t _{PLH} | C _L = 50pF | 4.5 | - | - | 30 | - | 38 | - | 45 | ns | | To High Level,
To Low Level | | C _L = 15pF | 5 | - | 12 | - | - | - | - | - | ns | | Output High Level | t _{PHZ,} t _{PLZ} | C _L = 50pF | 4.5 | _ | - | 30 | _ | 38 | - | 45 | ns | | Output Low Level to High Z | | C _L = 15pF | 5 | - | 12 | - | _ | - | - | - | ns | | Output Transition Time | t _{THL} , t _{TLH} | C _L = 50pF | 4.5 | - | _ | 12 | _ | 15 | _ | 18 | ns | | Input Capacitance | C _{IN} | C _L = 50pF | - | 10 | - | 10 | - | 10 | - | 10 | pF | | Three-State Output Capacitance | CO | <u> </u> | - | - | - | 20 | - | 20 | - | 20 | pF | | Power Dissipation Capacitance (Notes 3, 4) | C _{PD} | - | 5 | - | 41 | - | - | - | - | - | pF | #### NOTES: - 3. $C_{\mbox{\scriptsize PD}}$ is used to determine the dynamic power consumption, per channel. - $\text{4. } P_D = \text{V}_{CC}^2 \, f_i \, (\text{C}_{PD} + \text{C}_L) \, \text{where} \, f_i = \text{Input Frequency}, \, C_L = \text{Output Load Capacitance}, \, \text{V}_{CC} = \text{Supply Voltage}.$ # Test Circuits and Waveforms FIGURE 7. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC FIGURE 8. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC FIGURE 9. HC THREE-STATE PROPAGATION DELAY WAVEFORM FIGURE 10. HCT THREE-STATE PROPAGATION DELAY WAVEFORM NOTE: Open drain waveforms t_{PLZ} and t_{PZL} are the same as those for three-state shown on the left. The test circuit is Output $R_L = 1k\Omega$ to V_{CC} , $C_L = 50pF$. FIGURE 11. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT # 14 LEADS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. # N (R-PDIP-T**) #### **16 PINS SHOWN** # PLASTIC DUAL-IN-LINE PACKAGE NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A). The 20 pin end lead shoulder width is a vendor option, either half or full width. # DW (R-PDSO-G**) #### PLASTIC SMALL-OUTLINE PACKAGE ## **16 PINS SHOWN** NOTES: A. All linear dimensions are in inches (millimeters). B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). D. Falls within JEDEC MS-013 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2003, Texas Instruments Incorporated