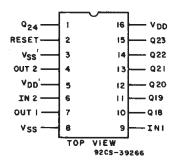
RESET 2 - Q₁₈ -Q₁₉ 12 920 13 · Q₂₁ Q22 ·Q₂₃ 924 VDD = 16 V_{SS} = 8 92 CS - 39 265

FUNCTIONAL DIAGRAM

CMOS 24-Stage Frequency Divider

High-Voltage Types (20-Volt Rating)


Features:

- Reset disables the RC oscillator for lowpower standby condition
- Voo' and Vss' pins are brought out from the crystal oscillator to allow use of external resistors for low-power operation . Meets all requirements of JEDEC
- Maximum input current of 1 µA at 18 V over full package-temperature range: 100 nA at 18 V and 25° C
- Common reset

- 100% tested for 20-V quiescent current
- 5, 10 and 15 V parametric ratings
- Standardized symmetrical output characteristics
- Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

CD4521B consists of an oscillator section and 24 ripple-carry binary counter stages. The oscillator configuration (using IN1) allows design of either RC or crystal oscillator circuits. IN1 should be tied either HIGH or LOW when not in use. A HIGH on the RESET causes the counter to go to the all-0's state and disables the oscillator. The count is advanced on the negative transition of IN1 (and IN2). A time-saving test mode is described in the Functional Test Sequence Table and in Fig. 6.

The CD4521B types are supplied in 16-lead dual-in-line plastic packages (E suffix), 16-lead small-outline packages (M. M96, MT. and NSR suffixes), and 16-lead thin shrink small-outline packages (PW and PWR suffixes).

TERMINAL ASSIGNMENT

OUTPUT	COUNT CAPACITY	
Q18	218 = 262,144	
Q19	219 = 524,288	
Q20	2 ²⁰ = 1,048,576	
Q21	2 ²¹ = 2,097,152	
Q22	2 ²² = 4,194,304	
Q23	2 ²³ = 8,388,608	
Q24	2 ²⁴ = 16,777,216	

MAXIMUM RATINGS, Absolute-Maximum Values:

DC SUPPLY-VOLTAGE RANGE, (VDD)	
Voltages referenced to VSS Terminal)	0.5V to +20V
INPUT VOLTAGE RANGE, ALL INPUTS0.	5V to Von +0.5V
DC INPUT CURRENT, ANY ONE INPUT	±10mA
POWER DISSIPATION PER PACKAGE (PD):	
For T _A = -55°C to +100°C	500mW
For T _A = +100°C to +125°C Derate Linearity at 12m	W/°C to 200mW
DEVICE DISSIPATION PER OUTPUT TRANSISTOR	
FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)	100mW
OPERATING-TEMPERATURE RANGE (TA)	55°C to +125°C
STORAGE TEMPERATURE RANGE (T _{stg})	65°C to +150°C
LEAD TEMPERATURE (DURING SOLDERING):	
At distance 1/18 \pm 1/32 inch (1.59 \pm 0.79mm) from case for 10s max	+265°C

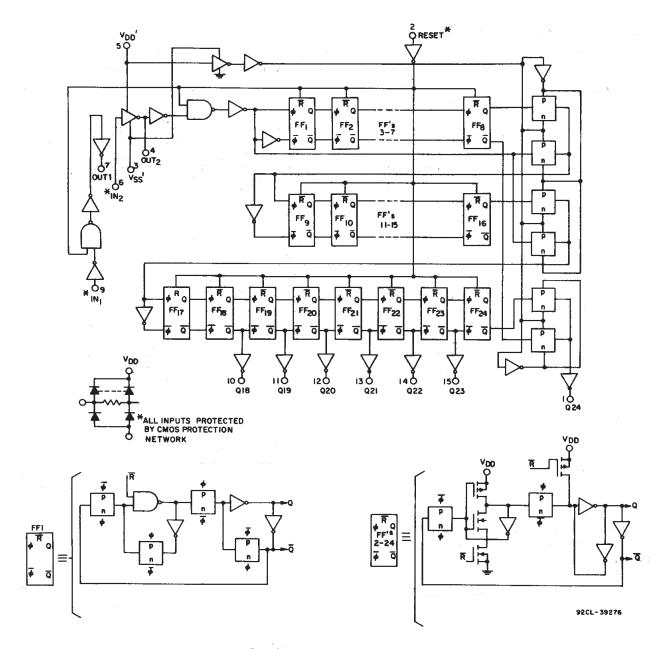


Fig. 1 - Logic diagram for CD4521B.

STATIC ELECTRICAL CHARACTERISTICS

CHARACTERISTIC	со	NDITIO	NS	LIMITS AT INDICATED TEMPERATURES (°C)					UNITS		
	Vo	VIN	V _{DD}				· ·	+25			1
	(v)	(V)	(V)	-55	-40	+85	+125	Min.	Тур.	Max.	<u> </u>
		0, 5	- 5	5.	. 5	150	150	_	0.04	5	
Quiescent Device	— ·	0, 10	10	10	10	300	300		0.04	10	μΑ
Current, IDD Max.		0, 15	15	20	20	600	600		0.04	20] "
	-	0, 20	20	100	100	3000	3000		0.08	100]
Out-11 (Si-1)	0.4	0, 5	5	0.64	0.61	0.42	0.36	0.51	-1 ⁵	_	
Output Low (Sink)	0.5	0, 10	-10	1.6	1.5	1.1	0.9	1.3	2.6	_]
Current, IoL Min.	1.5	0, 15	15	4.2	4	2.8	2.4	3.4	6.8	_	m A
\$	4.6	0, 5	5	-0.64	-0.61	-0.42	-0.36	-0.51	-1		
Output High (Source)	2.5	0, 5	5	-2	-1.8	-1.3	-1.15	-1.6	-3.2	_	
Current, Ion Min.	9.5	0, 10	10	-1.6	1.5	1.1	-0.9	-1.3	-2.6		
	13.5	0, 15	15	-4.2	-4	-2.8	-2.4	-3.4	-6.8	_	
Output Valtages	_	0, 5	5	0.05					0	0.05	
Output Voltage:	_	0, 10	10		0.05				0	0.05	
Low-Level, Vol Max.		0, 15	. 15	0.05			· —	0	0.05		
Output Valtage	_	0, 5	5 .		4.	95		4.95	5		
Output Voltage:		0, 10	10 -		9.	95		9.95	10	_	
High-Level, V _{он} Min.	_	0, 15	15 🕟		14.95			14.95	15	_	V
Innuit I am Valtage	0.5,4.5	_	5	-	1	.5		_		1.5] '
Input Low Voltage, V _{IL} Max.	1, 9	_	10			3				3	
	1.5,13.5	_	15			4				4]
Input High Voltage	0.5,4.5		5		3	3.5		3.5]
Input High Voltage,	1, 9		10			7		7]
V _{IH} Min.	1.5,13.5		15			l 1		11			
Input Current, I _{IN} Max.	T -	0, 18	18	±0.1	±0.1	±1	±1		±10 ⁻⁵	±0.1	μA

RECOMMENDED OPERATING CONDITIONS

For maximum reliability, nominal operating conditions should be selected so that operating is always within the following ranges:

01145407774	VDD	LIM			
CHARACTERISTIC	(V)	Min.	Max.	UNITS	
Supply-Voltage Range (For TA = Full Package-Ter	nperature Range)		3	18	ν
		5	340		
Input Pulse Width	tw ø	10	150		
•		15	120	–	
		5	180	-	ns
Reset Pulse Width	t _{w(R)}	10	80	_	
		15	50	_	
	fφ	5	_	2	MHz
Input Pulse Frequency		10	_	5	
	·	15	_	6.5	
****		5	_	15	μs
Input Pulse Rise or Fall Time	$t_{r} \boldsymbol{\phi}, t_{f} \boldsymbol{\phi}$	10	_	15	
·		15	_	15	
		5	1K	10M	
R _T Operating Range		10	1K	10M	Ω
		15	1K	10M	
		5	15p	10M	
C _T Operating Range		10	15p	10M	F
		15	15p	10M	

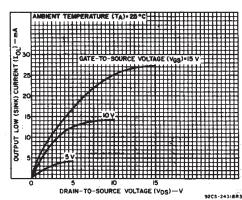


Fig. 2 - Typical output low (sink) current characteristics.

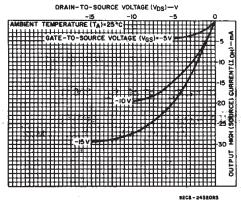


Fig. 4 - Typical output high (source) current characteristics.

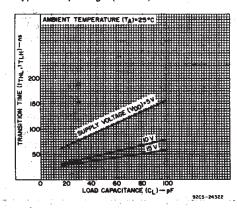


Fig. 6 - Typical transition time as a function of load capacitance.

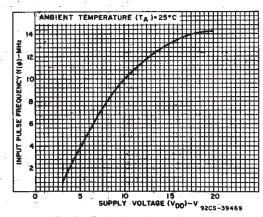


Fig. 8 - Typical maximum input pulse frequency vs. supply voltage.

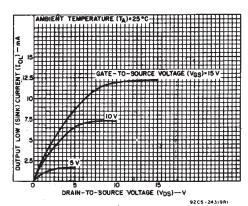


Fig. 3 - Minimum output low (sink) current characteristics.

ORAIN-TO-SOURCE VOLTAGE (VDS)—V

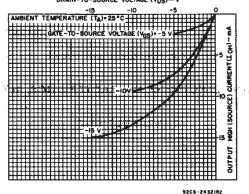


Fig. 5 - Minimum output high (source) current characteristics.

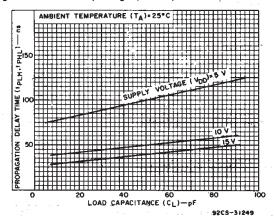


Fig. 7 - Typical propagation delay time $(Q_n \text{ to } Q_n + 1)$ as a function of load capacitance.

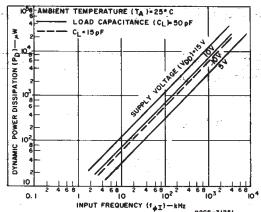
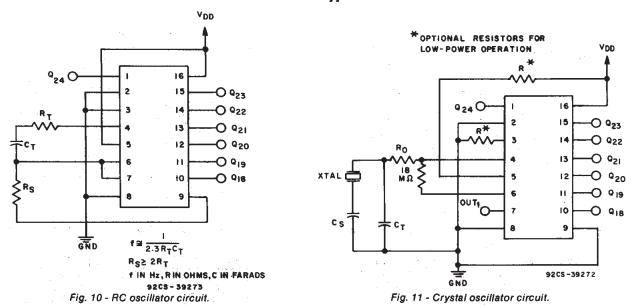



Fig. 9 - Typical dynamic power dissipation as a function of input frequency.

DYNAMIC ELECTRICAL CHARACTERISTICS, At TA = 25°C; Input t_r, t_f = 20 ns, CL = 50 pF, RL = 200 Ω

011404077010710		TEST CONDITIO	TEST CONDITIONS				UNITS
CHARACTERISTIC			V _{DD} (V)	Min.	Тур.	Max.	UNITS
Propagation Delay Time:	tpLH, tpHL	:	5	-	4.5	9	
Input to Q18		4.7	10	.— .	1.7	3.5	
			15		1.3	2.7	450
			- 5		6	12	μs
Input to Q24			10		2.2	4.5	
			15	-	1.7	3.5	
	. :		5	_	400	800	
Reset to Qn			10	4 ****	170	340	
			15	_	120	240	
Transition Time*	t _{THL} , t _{TLH}	*-	5	_	100	200	
.			10	. —	50	100	
			15		40	80	ns
Minimum Input Pulse Width	t _w ϕ		5	: - -	170	340	""
			10	-	75	150	
	<u> </u>		15		60	120]
Minimum Reset Pulse Width	t _{w(A)}	4 1 7 .	5	_	90	180	
			10	-	40	80	
		<u></u>	15		25	50	
Maximum Input Pulse Frequency	fφ		5	2	4	-	l
and the second s			10	5	10	-	MHz
			15	6.5	13		
Input Pulse Rise or Fall Time	$t_r \phi$, $t_f \phi$.5		-	15	1
A Company of the Comp			10		-	15	μs
			15	_		15	
Input Capacitance	Cin	Any Input			5	7.5	pF
R _T Operating Range		the state of the state of	5	1K	-	10M	
			10.	1K	-	10M	Ω
		<u> </u>	15	1K		10M	
C _T Operating Range			5	15p	-	10μ	
		1	10	15p	-	10μ	F
	<u> </u>		15	15p		10μ	<u> </u>
Maximum Oscillator Frequency		R _T =1 KΩ	5	0.5	0.7	0.9	1
		C ₁ =15 pF	10	1.2	1.5	1.8	MHz
<u> </u>		R _s =30 KΩ	15	1.7	2.1	2.5	

^{*}Not applicable for pin 4 (OUT2).

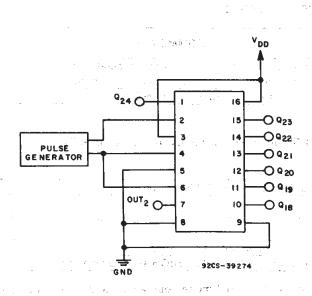


Fig. 12 - Functional test circuit.

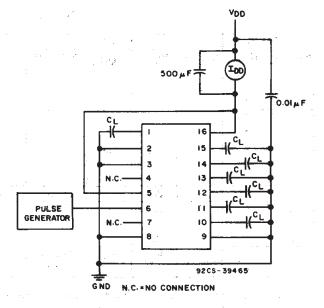


Fig. 13 - Dynamic power dissipation test circuit.

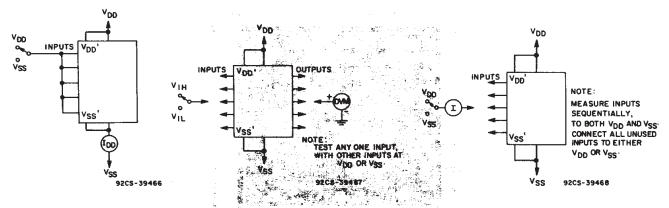


Fig. 14 - Quiescent device current.

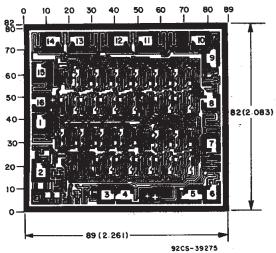
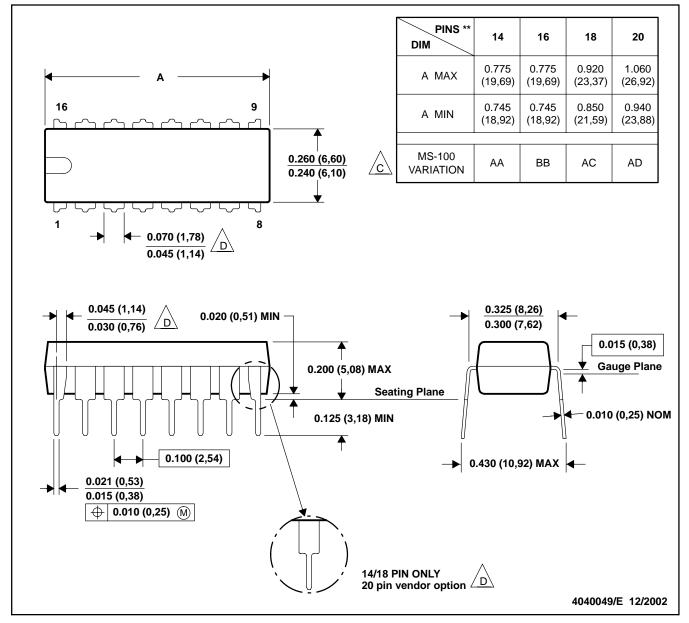

Fig. 15 - Input voltage.

Fig. 16 - Input current.

FUNCTIONAL TEST SEQUENCE

INPUTS		OUTPUTS			T	COMMENTS		
RESET	IN 2	OUT 2	V _{SS} '	V _{DD} '	Q18-Q24	COMMENTS		
	2					Counter is in three 8-stage sections in parallel mode.		
1	0	0	Vpp	Vss	LOW	Counter is reset. IN 2 and OUT 2 are tied together.		
0	1	1	Vop	Vss		First LOW-to-HIGH transition at IN 2.		
	0	0						
	1	1 1						
0 V _{DD}		Vss	1	255 LOW-to-HIGH transitions are clocked in at IN 2.				
	_	-	_			•		
	_	1 -						
0	1 /	1	V _{DD}	Vss	HIGH	The 255th LOW-to-HIGH transition.		
0	0	0	VDD	Vss	HIGH			
0	0	0	Vss	Vss	HIGH	Counter is converted back to 24-stage serial-mode operation.		
0	1	0	Vss	VDD	HIGH			
0	1	1	Vss	V _{DD}	HIGH	OUT 2 reverts to output operation.		
0	0	<u> </u>	Vss	V _{DD}	LOW	Counter ripples from an all-HIGH state to an all-LOW state.		

A test function, which divides, has been included to reduce the time required to test all 24 stages of the counter. Three sections are loaded in parallel to 255 counts, forcing all the outputs to be in the HIGH state. The counter is changed back to serial-mode operation and one additional LOW-to-HIGH transition is entered at IN 2, which causes the outputs to ripple from an all-HIGH state to an all-LOW state.


Dimensions and pad layout for CD4521BH.

Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10^{-3} inch) .

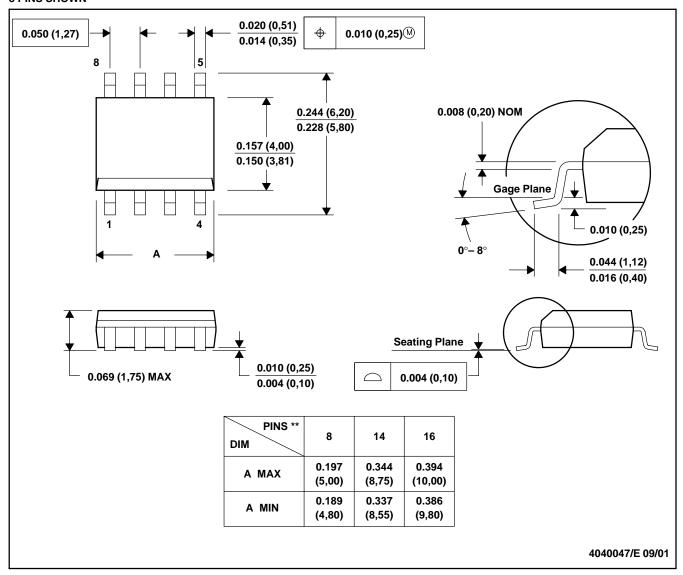
N (R-PDIP-T**)

16 PINS SHOWN

PLASTIC DUAL-IN-LINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.


Falls within JEDEC MS-001, except 18 and 20 pin minimum body Irngth (Dim A).

The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

8 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-012

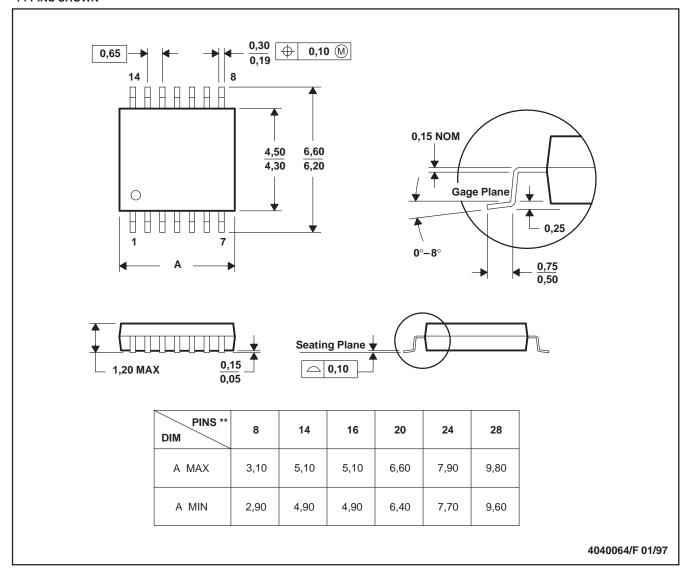
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated