Data sheet acquired from Harris Semiconductor SCHS027C – Revised February 2004 # **CD4017B, CD4022B Types** ### **CMOS Counter/Dividers** High-Voltage Types (20-Volt Rating) CD4017B—Decade Counter with 10 Decoded Outputs CD4022B—Octal Counter with 8 Decoded Outputs ■ CD4017B and CD4022B are 5stage and 4-stage Johnson counters having 10 and 8 decoded outputs, respectively. Inputs include a CLOCK, a RESET, and a CLOCK INHIBIT signal. Schmitt trigger action in the CLOCK input circuit provides pulse shaping that allows unlimited clock input pulse rise and fall times. These counters are advanced one count at the positive clock signal transition if the CLOCK INHIBIT signal is low. Counter advancement via the clock line is inhibited when the CLOCK INHIBIT signal is high. A high RESET signal clears the counter to its zero count. Use of the Johnson counter configuration permits high-speed operation, 2-input decode-gating and spike-free decoded outputs. Anti-lock gating is provided, thus assuring proper counting sequence. The decoded outputs are normally low and go high only at their respective decoded time slot. Each decoded output remains high for one full clock cycle. A CARRY-OUT signal completes one cycle every 10 clock input cycles in the CD4017B or every 8 clock input cycles in the CD4022B and is used to ripple-clock the succeeding device in a multi-device counting chain. #### Features: - Fully static operation - Medium-speed operation . . .10 MHz (typ.) at V_{DD} = 10 V - Standardized, symmetrical output characteristics - 100% tested for quiescent current at 20 V - = 5-V, 10-V, and 15-V parametric ratings - Meets all requirements of JEDEC Tentative Standard No. 13A, "Standard Specifications for Description of 'B' Series CMOS Devices" #### Applications: - Decade counter/decimal decode display (CD4017B) - Binary counter/decoder - Frequency division - Counter control/timers - Divide-by-N counting - For further application information, see ICAN-6166 "COS/MOS MSI Counter and Register Design and Applications" The CD4017B and CD4022B types are supplied in 16-lead hermetic dual-in-line ceramic packages (F3A suffix), 16-lead dual-in-line plastic package (E suffix), 16-lead small-outline packages (NSR suffix), and 16-lead thin shrink small-outline packages (PW and PWR suffixes). The CD4017B types also are supplied in 16-lead small-outline packages (M and M96 suffixes). # CLOCK 14 4 "2" 50 CLOCK 13 7 "3" 4 "2" 50 CLOCK 13 1NH 181T 15 10 "4" 1 "5" 0 CLOCK 13 1NH 181T 15 10 "4" 1 "5" 0 CLOCK 13 1NH 181T 15 10 "4" 1 "5" 0 CLOCK 13 1NH 181T 15 10 "4" 1 "5" 0 CLOCK 13 1NH 181T 15 10 "4" 1 "5" 0 CLOCK 13 1NH 181T 15 10 "4" 1 "5" 0 CLOCK 13 1NH 181T 15 10 "4" 1 "5" 0 CLOCK 13 1NH 181T 15 10 "4" 1 "5" 0 CLOCK 13 1NH 181T 15 10 "5" 0 CLOCK 13 1NH 181T 15 10 1NH 181T 15 10 CLOCK 13 #### RECOMMENDED OPERATING CONDITIONS For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges: | CHARACTERISTICS | V _{DD} | LIN | AITS | UNITS | |---|-----------------|-------------------|------------------------|-------| | | (V) | Min. | Max. | | | Supply-Voltage Range (For T_A = Full Package-
Temperature Range) | | 3 | 18 | v | | Clock Input Frequency, f _{CL} | 5
10
15 | -
-
- | 2.5
5
5.5 | MHz | | Clock Pulse Width, t _W | 5
10
15 | 200
90
60 | - - | . ns | | Clock Rise & Fall Time, t _{rCL} , t _{fCL} | 5
10
15 | UNLI | 3. | | | Clock Inhibit Setup Time, t _s | 5
10
15 | 230
100
70 | -
-
- | ns | | Reset Pulse Width, t _{RW} | 5
10
15 | 260
110
60 | -
- | ns | | Reset Removal Time, t _{rem} | 5
10
15 | 400
280
150 | -
-
- | ns , | ^{*}Only if Pin 14 is used as the clock input. If Pin 13 is used as the clock input and Pin 14 is tied high (for advancing count on negative transition of the clock), rise and fall time should be \leq 15 μ s. TOP VIEW CD4017B TERMINAL DIAGRAM TOP VIEW NC - no connection CD4022B TERMINAL DIAGRAM Fig. 3 - Logic diagram for CD40228. | MAXIMUM RATINGS, Absolute-Maximum Values: | |--| | DC SUPPLY-VOLTAGE RANGE, (V _{DD}) | | Voltages referenced to VSS Terminal)0.5V to +20V | | INPUT VOLTAGE RANGE, ALL INPUTS0.5V to V _{DD} +0.5V | | DC INPUT CURRENT, ANY ONE INPUT ±10mA | | POWER DISSIPATION PER PACKAGE (PD): | | For T _A = -55°C to +100°C | | For T _A = +100°C to +125°C Derate Linearity at 12mW/°C to 200mW | | DEVICE DISSIPATION PER OUTPUT TRANSISTOR | | FOR TA = FULL PACKAGE-TEMPERATURE RANGE (All Package Types) | | OPERATING-TEMPERATURE RANGE (T _A)55°C to +125°C | | STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C | | LEAD TEMPERATURE (DURING SOLDERING): | | At distance 1/16 ± 1/32 inch (1.59 ± 0.79mm) from case for 10s max | Fig. 5— Typical output low (sink) current characteristics. Fig. 6— Minimum output low (sink) current characteristics, # Characteristics. DRAIN-TO-SOURCE VOLTAGE (VDS)-V -15 -10 -5 AMBIENT TEMPERATURE (Ta)-23°C GATE-TO-SOURCE VOLTAGE (VGS)-5V -10 -10 T) -10 V Fig. 7— Typical output high (source) current characteristics. Fig. 8— Minimum output high (source) current characteristics. #### STATIC ELECTRICAL CHARACTERISTICS | CHARAC-
TERISTIC | CON | CONDITIONS LIMITS AT INDICATED TEMPERATURES | | | | | | | <u> </u> | (C) | UN I T | |--|----------------|---|----------|-------|-------|-------|-------|-------|-------------------|------|--------| | | v _o | VIN | v_{DD} | | | | | | +25 | _ | S | | | (V) | (V) | (V) | -55 | -40 | +85 | +125 | Min. | Тур. | Max. | | | Quiescent | _ | 0,5 | 5 | 5 | 5 | 150 | 150 | _ | 0.04 | 5 | | | Device | - | 0,10 | 10 | 10 | 10 | 300 | 300 | | 0.04 | 10 | μА | | Current, IDD Max. | _ | 0,15 | 15 | 20 | 20 | 600 | 600 | | 0.04 | 20 | | | יישוויי טטיי | - | 0,20 | 20 | 100 | 100 | 3000 | 3000 | - | 0.08 | 100 | | | Output Low | 0.4 | 0,5 | 5 | 0.64 | 0.61 | 0.42 | 0.36 | 0.51 | 1 | _ | | | (Sink) Current | 0.5 | 0,10 | 10 | 1.6 | 1.5 | 1.1 | 0.9 | 1.3 | 2.6 | - | | | lOL Min. | 1.5 | 0,15 | 15 | 4.2 | 4 | 2.8 | 2.4 | 3.4 | 6.8 | _ | | | Outros Hints | 4.6 | 0,5 | 5 | -0.64 | -0.61 | -0.42 | -0.36 | -0.51 | -1 | _ | mΑ | | Output High
(Source) | 2.5 | 0,5 | 5 | -2 | -1.8 | -1.3 | -1.15 | -1.6 | -3.2 | _ | | | Current, | 9.5 | 0,10 | 10 | -1.6 | -1.5 | -1.1 | -0.9 | -1.3 | -2.6 | - | | | IOH Min. | 13.5 | 0,15 | 15 | -4.2 | -4 | -2.8 | -2.4 | -3.4 | -6.8 | - | | | Output Voltage: | | 0,5 | 5 | | 0 | .05 | - | 0 | 0.05 | | | | Low-Level, | | 0,10 | 10 | | 0 | .05 | | 0 | 0.05 | | | | VOL Max. | - | 0,15 | 15 | | 0 | _ | 0 | 0.05 | v | | | | Output | - | 0,5 | 5 | | 4 | .95 | | 4.95 | 5 | _ | | | Voltage: | | 0,10 | 10 | | 9 | .95 | | 9.95 | 10 | I | | | High-Level,
VOH Min. | - | 0,15 | 15 | | 14 | .95 | | 14.95 | 15 | . – | | | | 0.5,4.5 | _ | 5 | | | 1.5 | | - | _ | 1.5 | | | Input Low
Voltage | 1,9 | _ | 10 | | | 3 | | | _ | 3 | | | VIL Max. | 1.5,13.5 | _ | 15 | | | 4 | | | _ | 4 | v | | Input High
Voltage,
V _{IH} Min. | 0.5,4.5 | | 5 | | | 3.5 | | 3.5 | _ | _ | | | | 1,9 | _ | 10 | | | 7 | | 7 | | | | | | 1.5,13.5 | - | 15 | | | 11 | | 11 | _ | _ | | | Input Current IN Max. | _ | 0,18 | 18 | ±0.1 | ±0.1 | ±1 | ±1 | _ | ±10 ⁻⁵ | ±0.1 | μΑ | # DYNAMIC ELECTRICAL CHARACTERISTICS At T_A = 25°C, Input t_r, t_f = 20 ns, C_L = 50 pF, R_L = 200 k Ω | CHARACTERISTIC | CONDITIONS | | LIMITS | | | | | |---|---------------------|-------------------|------------------|--------------------|-------|--|--| | • | V _{DD} (V) | Min. | Тур | Max. | UNITS | | | | CLOCKED OPERATION | | | | | | | | | | 5 | _ | 325 | 650 | | | | | Propagation Delay Time, tpHL, tpLH Decode Out | 10
15 | _
_ | 135
85 | 270
170 | ns | | | | Carry Out | 5
10
15 | _
 | 300
125
80 | 600
250
160 | | | | | Transition Time, t _{THL} , t _{TLH} Carry Out or Decode Out Line | 5
10
15 | -
-
- | 100
50
40 | 200
100
80 | ns | | | | Maximum Clock Input Frequency, fCL* | 5
10
15 | 2.5
5
5.5 | 5
10
11 | _
_
_ | MHz | | | | Minimum Clock Pulse Width, tw | 5
10
15 | | 100
45
30 | 200
90
60 | ns | | | | Clock Rise or Fall Time, trCL, trCL | 5, 10, 15 | UNL | .IMIT | ED | | | | | Minimum Clock Inhibit
to Clock Setup Time, t _s | 5
10
15 | -
- | 115
50
35 | 230
100
70 | ns | | | | Input Capacitance, C _{IN} | Any Input | - | 5 | _ | ρF | | | | RESET OPERATION | | | | | | | | | Propagation Delay Time, tpHL, tpLH
Carry Out or Decode Out Lines | 5
10
15 | -
- | 265
115
85 | 530
230
170 | ns | | | | Minimum Reset Pulse Width, t _W | 5
10
15 | -
- | 130
55
30 | 260
110
60 | ns | | | | Minimum Reset Removal Time | 5
10
15 | -
- | 140 | 4.00
280
150 | ns | | | ^{*} Measured with respect to carry output line. Fig. 9 - Propagation delay, setup, and reset removel time waveforms. Fig. 10 — Typical transition time as a function of load capacitance. Fig. 11 — Typical propagation delay time as a function of load capacitance (clock to decode output). Fig. 12 — Typical propagation delay time as a function of load capacitance (clock to carry-out). Fig. 13 – Typical dyanamic power dissipation as a function of clock input frequency. Fig. 17 - Dynamic power dissipation test circuit. Fig. 18 - Divide by N counter (N ≤ 10) with N decoded outputs. Fig. 16 - Input-voltage test sircult. When the Nth decoded output is reached (Nth clock pulse) the S-R flip flop (constructed from two NOR gates of the CD4001B) generates a reset pulse which clears the CD4017B or CD4022B to its zero count. At this time, if the Nth decoded output is greater than or equal to 8 in the CD-4017B or 5 in the CD4022B, the COUT line goes high to clock the next CD4017B or CD-4022B counter section. The "0" decoded output also goes high at this time. Coincidence of the clock low and decoded "0" output low resets the S-R flip flop to enable the CD4017B or CD4022B. If the Nth decoded output is less than 6 (C()4(-17B) or 5 (CD4022B), the COUT line will not go high and, therefore, cannot be used, in this case "0" decoded output may be used to perform the clocking function for the next counter. Fig. 19 - Cascading the CD4017B. #### CHIP DIMENSIONS AND PAD LAYOUTS CD4017BH CD4022BH Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils (10⁻³ inch). 17-Mar-2017 #### **PACKAGING INFORMATION** | Orderable Device | Status | Package Type | | Pins | | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|---------|------|------|----------------------------|------------------|--------------------|--------------|-----------------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | CD4017BE | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD4017BE | Sample | | CD4017BEE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD4017BE | Sample | | CD4017BF | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD4017BF | Samples | | CD4017BF3A | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD4017BF3A | Samples | | CD4017BM | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4017BM | Samples | | CD4017BM96 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4017BM | Samples | | CD4017BM96G4 | ACTIVE | SOIC | D | 16 | 2500 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4017BM | Samples | | CD4017BMG4 | ACTIVE | SOIC | D | 16 | 40 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4017BM | Samples | | CD4017BNSR | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4017B | Samples | | CD4017BNSRG4 | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4017B | Samples | | CD4017BPW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM017B | Samples | | CD4017BPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM017B | Samples | | CD4017BPWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM017B | Samples | | CD4017BPWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM017B | Samples | | CD4022BE | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD4022BE | Samples | | CD4022BEE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
(RoHS) | CU NIPDAU | N / A for Pkg Type | -55 to 125 | CD4022BE | Samples | | CD4022BF | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD4022BF | Samples | | CD4022BF3A | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | CD4022BF3A | Samples | www.ti.com #### PACKAGE OPTION ADDENDUM 17-Mar-2017 | Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan | Lead/Ball Finish | MSL Peak Temp | Op Temp (°C) | Device Marking | Samples | |------------------|--------|--------------|---------|------|---------|----------------------------|------------------|--------------------|--------------|----------------------|---------| | | (1) | | Drawing | | Qty | (2) | (6) | (3) | | (4/5) | | | CD4022BNSR | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4022B | Samples | | CD4022BNSRE4 | ACTIVE | SO | NS | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CD4022B | Samples | | CD4022BPW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM022B | Samples | | CD4022BPWE4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM022B | Samples | | CD4022BPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM022B | Samples | | CD4022BPWRE4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM022B | Samples | | CD4022BPWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS
& no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | -55 to 125 | CM022B | Samples | | JM38510/05651BEA | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | JM38510/
05651BEA | Samples | | M38510/05651BEA | ACTIVE | CDIP | J | 16 | 1 | TBD | A42 | N / A for Pkg Type | -55 to 125 | JM38510/
05651BEA | Samples | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free** (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. ⁽³⁾ MSL. Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. #### **PACKAGE OPTION ADDENDUM** 17-Mar-2017 - (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device. - (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device. - (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width. **Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### OTHER QUALIFIED VERSIONS OF CD4017B, CD4017B-MIL, CD4022B, CD4022B-MIL: Catalog: CD4017B, CD4022B Military: CD4017B-MIL, CD4022B-MIL NOTE: Qualified Version Definitions: - Catalog TI's standard catalog product - Military QML certified for Military and Defense Applications # PACKAGE MATERIALS INFORMATION www.ti.com 14-Jul-2012 #### TAPE AND REEL INFORMATION #### **REEL DIMENSIONS** #### **TAPE DIMENSIONS** | A0 | Dimension designed to accommodate the component width | |----|---| | В0 | Dimension designed to accommodate the component length | | K0 | Dimension designed to accommodate the component thickness | | W | Overall width of the carrier tape | | P1 | Pitch between successive cavity centers | #### TAPE AND REEL INFORMATION #### *All dimensions are nominal | Device | Package
Type | Package
Drawing | | SPQ | Reel
Diameter
(mm) | Reel
Width
W1 (mm) | A0
(mm) | B0
(mm) | K0
(mm) | P1
(mm) | W
(mm) | Pin1
Quadrant | |------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------| | CD4017BM96 | SOIC | D | 16 | 2500 | 330.0 | 16.4 | 6.5 | 10.3 | 2.1 | 8.0 | 16.0 | Q1 | | CD4017BNSR | SO | NS | 16 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 | | CD4017BPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | | CD4022BNSR | SO | NS | 16 | 2000 | 330.0 | 16.4 | 8.2 | 10.5 | 2.5 | 12.0 | 16.0 | Q1 | | CD4022BPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.9 | 5.6 | 1.6 | 8.0 | 12.0 | Q1 | www.ti.com 14-Jul-2012 *All dimensions are nominal | 7 til dilliciololio ale Hollilla | | | | | | | | |----------------------------------|--------------|-----------------|------|------|-------------|------------|-------------| | Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) | | CD4017BM96 | SOIC | D | 16 | 2500 | 333.2 | 345.9 | 28.6 | | CD4017BNSR | SO | NS | 16 | 2000 | 367.0 | 367.0 | 38.0 | | CD4017BPWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | | CD4022BNSR | SO | NS | 16 | 2000 | 367.0 | 367.0 | 38.0 | | CD4022BPWR | TSSOP | PW | 16 | 2000 | 367.0 | 367.0 | 35.0 | # D (R-PDS0-G16) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side. - E. Reference JEDEC MS-012 variation AC. # D (R-PDSO-G16) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. #### **MECHANICAL DATA** # NS (R-PDSO-G**) # 14-PINS SHOWN #### PLASTIC SMALL-OUTLINE PACKAGE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15. #### 14 LEADS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. PW (R-PDSO-G16) #### PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994. - B. This drawing is subject to change without notice. - Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side. - Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side. - E. Falls within JEDEC MO-153 # PW (R-PDSO-G16) # PLASTIC SMALL OUTLINE - A. All linear dimensions are in millimeters. - B. This drawing is subject to change without notice. - C. Publication IPC-7351 is recommended for alternate designs. - D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations. - E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads. # N (R-PDIP-T**) # PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. #### **IMPORTANT NOTICE** Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services. Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications. TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice. TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements. Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S. TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection. Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.