

# AS69-T20 Data Sheet

2.4GHz, 100mW, Wireless Serial Port Module Full duplex, Adaptive Airspeed





http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009

# Table of Content

| 1. | Product Overview                                                                                                                                         | 3  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 2. | Product Features                                                                                                                                         | 3  |
| 3. | Series Products                                                                                                                                          | 4  |
| 4. | Electrical Parameters                                                                                                                                    | 4  |
| 5. | Module Functions                                                                                                                                         | 5  |
|    | <ul><li>5.1 Recommended Connection Diagram</li><li>5.2 Pin Definition</li><li>5.3 Pin Function</li></ul>                                                 | 5  |
| 6. | Module Command                                                                                                                                           | 9  |
|    | <ul><li>6.1 Command Format</li><li>6.2 Module Parameter Register</li><li>6.3 Module Factory Setting</li></ul>                                            | 10 |
| 7. | Module Functions                                                                                                                                         | 12 |
|    | <ul><li>7.1 Overview of Module Functions</li><li>7.2 Detailed Module Functions</li></ul>                                                                 |    |
| 8. | Sequence Diagram                                                                                                                                         | 14 |
|    | <ul><li>8.1 Sequence Diagram of Data Transmission</li><li>8.2 Sequence Diagram of Module Switch</li><li>8.3 Sequence Diagram of Module Command</li></ul> | 14 |
| 9. | Package Information                                                                                                                                      | 17 |
|    | 9.1 Machine Size (unit: mm)<br>9.2 Reference Pad Design (unit: mm)                                                                                       |    |
| 10 | ). Package Manner                                                                                                                                        | 18 |
|    | 10.1 Electrostatic Bag Package<br>10.2 Pallet Package (unit: mm)                                                                                         |    |

http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009

## 1. Product Overview

AS69-T20 is a 100mW industrial wireless data transceiver with high stability, operates at 2.4GHz. The module is designed and developed using imported RF chip nRF24I01P, supports 8 baud rates 1200-115200bps. Wireless airspeed and baud rate are adaptive matching, it supports full-duplex transmission with unlimited packet length at various baud rates. The module has three operating states and can be freely switched at run time.

## 2. Product Features

- Point-to-point transmission, half-duplex transmission and full duplex transmission
- Receiving sensitivity is up to -102dBm, range 2100 meters
- Built-in multiple exception handling mechanisms ensure the stable operation for a long time
- Airspeed and baud rate are adaptive matching
- Multiple levels of transmitting power
  - 4 power levels adjustable (0-3), each levels steps 6dBm
  - Power Range: 2-20dBm, Max 100mW
- Multiple baud rates [1]
  - 8 commonly used baud rates, default baud rate 9600bps
  - ▶ Baud rate range:1200bps~115200bps
- 4 operation modes<sup>[2]</sup>
  - MD0 = 0 MD1 = 0 half-duplex working mode
  - MD0 = 0 MD1 =1 half-duplex working mode
  - MD0 = 1 MD1 = 0 full duplex working mode
  - ➤ MD0 = 1 MD1 = 1 sleep mode
- Frequency 2.4-2.525GHz, providing 16 channels<sup>[4]</sup>
  - 2.4G + CHAN \* 10MHz
  - CHAN:0\* 00~0\*0CH (corresponding to 2.4G-2.525GHz)
  - Default operation frequency 2.4GHz, application free band
- Supply voltage range
  - > 2.0V-5.5VDC

- Built-in LDO ensures stable power supply, meeting variety system requirements
- Data 1024 circular FIFO
  - > 1024 transmitting FIFO (unlimited packet length)
  - > 1024 receiving FIFO (unlimited packet length)
  - > Automatic subcontracting transmission
- Transparent Broadcasting <sup>[5]</sup>
  - The data sent by any module can be received by modules with the same address and the same channel. The data transmission is transparent, and what is sent is what is received.
- Half-Duplex Transmission Mode <sup>[5]</sup>
  - High-speed data transmission, no limit on packet length, one-way transmission.
  - When the module performs high-speed data transmission at the same time, if it is transmitting data, it cannot receive. If it receives, it cannot transmit. The data can only be transmitted in one direction at the same time.
- Full Duplex Transmission <sup>[5]</sup>
  - High-speed data transmission, without limiting the packet length and bidirectional transmission.
  - When the module performs high-speed data transmission at the same time, it can receive data while transmitting data, and can transmit data while receiving data, enabling simultaneous bidirectional transmission

#### Remarks:

- 1) For details, see the SPEED register in Chapter 6.2 of module Parameter Configuration.
- 2) For details, See the pin definition and function in chapter 5
- 3) For details, see the CHAN register in Chapter 6.2 of module parameter configuration.
- 4) For details, See the relationship diagram of voltage and power in Chapter 5
- 5) For details, See the module function table in Chapter 7.



חר

http://en.ashining.com WhatsApp/Mobile/WeChat: +86 13017797009 jack@ashining.com

## 3. Series Products

### Table 3-1 Brief Specification of AS69-T20

| Item Model | Carrier Frequency<br>(Hz)                                       | IC        | Size<br>(mm) | Max transmit power<br>(dBm) | Range<br>(km) | Package         | Antenna |  |  |  |  |
|------------|-----------------------------------------------------------------|-----------|--------------|-----------------------------|---------------|-----------------|---------|--|--|--|--|
| AS69-T20   | 2.4G-2.525G                                                     | nRF24I01P | 20*36        | 20                          | 2.1           | In-line package | SMA-K   |  |  |  |  |
|            | *All models of the AS69 series can communicate with each other* |           |              |                             |               |                 |         |  |  |  |  |

## 4. Electrical Parameters

### Table 4-1 Electrical Parameters of AS69-T20

### Test Condition: Tc=25°C, VCC=3.3V

| Item Model | Parameter Name        | Description                                                                                                                           | Min | Typical<br>Value | Max   | Units |
|------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----|------------------|-------|-------|
| AS69-T20   | Supply voltage        | If the power supply voltage is less than 3.6v, the<br>output power will decline, but it has little influence<br>on the received power | 2.0 |                  | 5.5   | V     |
|            |                       | SendPower [1] = 0                                                                                                                     |     | 206              |       | mA    |
| AS69-T20   | Transmitting current  | SendPower= 1                                                                                                                          |     | 76               |       | mA    |
| A509-120   |                       | SendPower= 2                                                                                                                          |     | 70               |       | mA    |
|            |                       | SendPower= 3                                                                                                                          |     | 47               |       | mA    |
|            |                       | half-duplex working mode (MD0=0, MD1=0)                                                                                               |     | 1                |       | mA    |
| A 000 TO0  | Receiving             | Reserved working mode (MD0=0, MD1=1)                                                                                                  |     |                  |       | mA    |
| AS69-T20   | current               | Full duplex working mode (MD0=1, MD1=0)                                                                                               |     | 151              |       | mA    |
|            |                       | Sleep mode (MD1=1, MD1=1)                                                                                                             |     | 151              |       |       |
| AS69-T20   | Sleep current         | current measured in sleep mode (MD0=1,<br>MD1=1)                                                                                      |     | 3.8              |       | uA    |
| AS69-T20   | Working frequency     | 2.4G-2.525GHz,1MHz stepping, 16Channels, factory default 2.4GHz                                                                       | 2.4 | 2.4              | 2.525 | MHz   |
|            |                       | SendPower= 0                                                                                                                          |     | 20               |       | dBm   |
| A 000 T00  | <b>T</b> 11           | SendPower= 1                                                                                                                          |     | 14               |       | dBm   |
| AS69-T20   | Transmit power        | SendPower= 2                                                                                                                          |     | 8                |       | dBm   |
|            |                       | SendPower= 3                                                                                                                          |     | 2                |       | dBm   |
| AS69-T20   | Airspeed              | Air speed is adaptive matching with baud rate                                                                                         |     | 250k             |       | bps   |
| AS69-T20   | Receiving sensitivity | The receiving sensitivity has nothing to do with the serial port rate or delay time                                                   |     | -102             |       | dBm   |
| AS69-T20   | Operation temperature | AS69-T20 industrial product                                                                                                           | -40 |                  | +85   | °C    |
| AS69-T20   | Operation humidity    | Relative humidity, no condensation                                                                                                    | 10% |                  | 90%   |       |
| AS69-T20   | Storage temperature   |                                                                                                                                       | -40 |                  | +125  | °C    |

Ashining

http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009

## 5. Module Functions

### 5.1 Recommended Connection Diagram



### 0-1 Recommended Connection Diagram

### 5.2 Pin Definition

### Table 5-1 Pin Definition of AS69-T20

| Pin Number | Pin Name | Pin Orientation      | Pin Usage                                                                                                                                                                                                                                                          |
|------------|----------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | MD0      | Input (weak pull up) | Cooperates with MD1 of low delay to decide four kinds of operation modes                                                                                                                                                                                           |
| 2          | MD1      | Input (weak pull up) | Cooperates with MD0 of low delay to decide four kinds of operation modes                                                                                                                                                                                           |
| 3          | RXD      | Input                | TTL UART inputs, connects to external TXD output pin. It can be configured as<br>open-drain or pull-up input, see parameter setting for details                                                                                                                    |
| 4          | TXD      | output               | TTL UART outputs, connects to external RXD input pin. It can be configured as<br>open-drain or push-pull output, see parameter setting for details                                                                                                                 |
| 5          | AUX      | output               | Indicates the operation status of the module, and wakes up the external MCU.<br>During the procedure of self-test initialization, the pin outputs low level. Can be<br>configured as open-drain output, or push-pull output. see parameter settings for<br>details |
| 6          | VCC      |                      | power supply, voltage2.0-5.5V                                                                                                                                                                                                                                      |
| 7          | GND      |                      | Ground line, connected to the power supply reference ground                                                                                                                                                                                                        |



### 5.3 Pin Function

### 5.3.1 Pins Function of MDO and MD1 in Low Latency Mode



### Picture 0-2 Internal structure of the MD0 and MD1 pin

The free combinations of the high and low level of pins MD0 and MD1 in low-latency operation mode can determine the four operating modes of the wireless UART module and these four operating modes can be freely switched.

Pay attention to the following two special cases when switching working modes:

- 1. The module received wireless data and has not finished outputting, and then enters a new mode after the data output is completed.
- 2. The module sends wireless data has not been sent yet, and then enters the new mode after the data is sent.

| Operation Mode              | MD1 | MD0 | Mode Introduction                                                                                |
|-----------------------------|-----|-----|--------------------------------------------------------------------------------------------------|
| Half-duplex working<br>mode | 0   | 0   | UART open, wireless channel open                                                                 |
| Reserved working mode       | 0   | 1   | Reserved, same as half-duplex working mode                                                       |
| Full duplex working mode    | 1   | 0   | UART open, wireless channel open, Full duplex transmission.                                      |
| sleep mode 1                |     | 1   | Module enters into sleep can receive the parameter configuration Command to configure parameter. |

### Table 5-2 Operation Mode Form

### Table 5-3 Communication Mode Form

|                   | Receive                  | Opera                       | Data Transmission Mode   |                          |
|-------------------|--------------------------|-----------------------------|--------------------------|--------------------------|
| Transmit          |                          | Half-Duplex Working<br>Mode | Full Duplex Working Mode | Transparent Broadcasting |
| Operation<br>Mode | Half-Duplex Working Mode | Y                           | Y                        | Y                        |
| Mode              | Full Duplex Working Mode | Y                           | Y                        | Y                        |

jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009



### 5.3.2 Function of AUX Pin

http://en.ashining.com

| Module outside | Module inside |     |
|----------------|---------------|-----|
| AUX            | 100 Ω<br>     | мси |

### Picture 0-3 Schematic Diagram of The Internal Structure of The AUX Pin

AUX is used as indication for wireless send and receive buffer and self-test. It indicates whether the module has data not sent by wireless, or whether the received data has been sent through the UART, or the module is initializing the self-test.

Mode of AUX pin should be checked before switching operation mode. When the AUX output is low, it indicates that the module is busy. After the AUX output is high for 2ms, it indicates the module is idle and ready to change operation mode. MDO, MD1 in low latency mode start to jump and after that AUX keeps outputting high level for 3ms, the module changes the mode. When AUX outputs high level and maintains for about 2ms, the mode change is done.

In the process of reset, the module will reinitialize the parameters, during which the AUX keep low level.

### 5.3.3 Function of RXD And TXD Pins



### Picture 0-4 Internal Structure of the RXD and TXD Pin

RXD and TXD are serial data transmission and reception pins, at the same time, the UART has 8 common baud rates to choose from, the supported baud rate range is 1200~115200 (bps); the UART parity mode also has odd parity, even parity and No parity. The byte transmission format of UART is shown in Picture:



Picture 0-5 Format of UART Byte Transmission

IDLE: High level when idle St: start bit P: parity bit Sp1: stop bit



http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009

### 5.3.4 Function of VCC and GND Pins

GND indicates the ground line, VCC indicates the power supply, and the module power supply has its own LDO. Input voltage range: 2.0V - 5.5VDC. As shown in below Picture



#### Picture 0-6 Power LDO

#### Remarks:

The input power ripple coefficient should be controlled within 100mV, and the instantaneous pulse current should be more than 200mA.

When the power supply voltage is less than critical value, the output power declines, but the reception performance is less affected. The relationship between voltage and power is shown in below Picture



Picture 0-7 Relationship diagram of voltage and powe



## 6. Module Command

### 6.1 Command Format

The parameter configuration Command is supported in the sleep operation mode, which means that the pins in low latency operation mode are set to high level (MD0 = 1, MD1 = 1).

### Table 6-1 Command Overview Form

| No. | Command            | Command Function                                                                             |
|-----|--------------------|----------------------------------------------------------------------------------------------|
| 1   | 0xC0               | Set the module parameters. The parameters set by this Command can be saved after power off.  |
| 2   | 0xC2               | Set the module parameters. The parameters set by this Command are not saved after power off. |
| 3   | 0xC1 + 0xC1 + 0xC1 | Read module parameters                                                                       |
| 4   | 0xC3 + 0xC3 + 0xC3 | Read the hardware version of the module                                                      |
| 5   | 0xC4 + 0xC4 + 0xC4 | Reset module Command                                                                         |
| 6   | 0xC9 + 0xC9 + 0xC9 | Restore default parameters                                                                   |
| 7   | 0xE1 + 0xE1 + 0xE1 | Handshake command                                                                            |
| 8   | 0xF3 + 0xF3 + 0xF3 | Read the software version of the module                                                      |

Detailed explanation of the command function, taking the default factory configuration as an example. See the following form for details:

#### Table 6-2

| Command Format                                                        | Module Response   | Description                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0xC0 ADDH ADDL SPEED CHAN<br>OPTION (See the register description of  | ОК                | The configuration succeeds and the ASCII string is returned. The parameters configured can be saved after power-off.                                                                                                                                                  |
| parameter configuration for details)                                  | ERROR             | The configuration failed and the ASCII string is returned. The original configuration parameters are not changed.                                                                                                                                                     |
| 0xC2 ADDH ADDL SPEED CHAN<br>OPTION                                   | ОК                | The configuration succeeds and the ASCII string is returned. The parameters configured cannot be saved after power-off.                                                                                                                                               |
| (See the register description of parameter configuration for details) | ERROR             | The configuration failed and the ASCII string is returned. The original configuration parameters are not changed.                                                                                                                                                     |
| 0xC6 + 16byte Configure key                                           | ОК                | Data encryption succeeded                                                                                                                                                                                                                                             |
| 0xC1 0xC1 0xC1                                                        | C0 12 34 18 00 40 | The module returns the present configuration parameters in hexadecimal format.                                                                                                                                                                                        |
| 0xC3 0xC3 0xC3                                                        | AS69-T20-V3.0     | The module returns the present hardware version in ASCII format.                                                                                                                                                                                                      |
| 0xC4 0xC4 0xC4                                                        | ОК                | The module generates a reset. During the reset process, the module performs a self-test and the AUX outputs a low level. After the reset, the AUX output is high, and the module starts to work normally. At this time, you can switch mode or initiate next Command. |
| 0xC9 0xC9 0xC9                                                        | ОК                | Restore default parameter configuration successfully                                                                                                                                                                                                                  |
| 0xE1 0xE1 0xE1                                                        | ОК                | When the user forgets the baud rate, it can be used to query by baud rate until 'OK' is received.                                                                                                                                                                     |
| 0xF3 0xF3 0xF3                                                        | 69T20-032M-V3.46  | The module will return the current software version in ASCII format.                                                                                                                                                                                                  |

http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009



### 6.2 Module Parameter Register

The module parameters can be modified in the sleep mode (i.e. MD0 = 1, MD1 = 1).

Configuring parameter register (Configuring parameter register cannot be used alone, it must be used according to the command format of the configuration parameter, see Chapter 6, Section 6.1 for details)

#### Table 6-3 ADDH Module Address High 8-Bit Register

|                           |    | ADDH [ 7:0] |    |    |    |    |    |    |
|---------------------------|----|-------------|----|----|----|----|----|----|
| Read and Write Properties | rw | rw          | rw | rw | rw | rw | rw | rw |
| Default Value             | 0  | 0           | 0  | 1  | 0  | 0  | 1  | 0  |

ADDH [7:0]: indicates the module address high byte, factory default 0x12

#### Table 6-4 ADDL Module Address Low 8-Bit Register

|                           |    | ADDL [ 7:0] |    |    |    |    |    |    |
|---------------------------|----|-------------|----|----|----|----|----|----|
| Read and Write Properties | rw | rw          | rw | rw | rw | rw | rw | rw |
| Default Value             | 0  | 0           | 1  | 1  | 0  | 1  | 0  | 0  |

ADDL [7:0]: module address low byte, factory default 0x34

### Table 6-5 SPEED Communication Configuration Register

|                           | UART C | S[1:0] | UART BAUD [ 2: 0] |    |    | Reserved |    |    |
|---------------------------|--------|--------|-------------------|----|----|----------|----|----|
| Read and Write Properties | rw     | rw     | rw                | rw | rw | rw       | rw | rw |
| Default Value             | 0      | 0      | 0                 | 1  | 1  | 0        | 0  | 0  |

SPEED [ 7: 6] UART CS [ 1: 0]: UART parity bit 00: 8N1 (default) 01: 8O1 10: 8E1 11: Same as 8N1

SPEED [ 5: 3] UART BAUD [ 2: 0]: UART baud rate 000: UART baud rate is 1200 bps 001: UART baud rate is 2400 bps 010: UART baud rate is 4800 bps 011: UART baud rate is 9600 bps (default) 100: UART baud rate is 19200 bps 101: UART baud rate is 38400 bps 110: UART baud rate is 57600 bps 111: UART baud rate is 115200 bps

SPEED [ 2: 0]

Reserved [ 2: 0]: Reserved



http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009

### Table 6-6 CHAN Channel Register

|                           | Reserved |    |    |    | CHAN [ 7: 0] |    |    |    |
|---------------------------|----------|----|----|----|--------------|----|----|----|
| Read and Write Properties | rw       | rw | rw | rw | rw           | rw | rw | rw |
| Default Value             | 0        | 0  | 0  | 0  | 0            | 0  | 0  | 0  |

Reserved [7:4]: Reserved

CHAN [ 3: 0] : frequency (2400+ CHAN\*10M) Factory Default: 0x00 (2400MHz) 00000000: 0x00 ( Min: 2400MHz ) 00001100: 0x0C ( Max: 2525MHz )

#### Table 6-7 OPTION Special Function Register

|                           | Reserved | ЮТуре |    | Reserved Se |    |    | SendPo | ndPower [1:0] |  |
|---------------------------|----------|-------|----|-------------|----|----|--------|---------------|--|
| Read and Write Properties | rw       | rw    | rw | rw          | rw | rw | rw     | rw            |  |
| Default Value             | 0        | 1     | 0  | 0           | 0  | 0  | 0      | 0             |  |

OPTION [7]: Reserved 0: Transparent transmission (default) 1: Point-to-Point transmission

OPTION [6] IOType: IO port drive mode 0: TXD, AUX open output, RXD open input 1: TXD, AUX push-pull output, RXD pull-up input (default)

OPTION [ 5: 2]: Reserved

OPTION [1:0] SendPower [1:0]: Trans Power

00: 20dBm (default)

01: 14dBm

10: 8dBm

11: 2dBm

#### Remarks:

wireless wake-up time is typical value

### 6.3 Module Factory Setting

### Table 6-9 Factory Configuration Form of Register:

| Register Name      | ADDH | ADDL | SPEED | CHAN | OPTION |
|--------------------|------|------|-------|------|--------|
| Register Parameter | 12   | 34   | 18    | 00   | 40     |

#### Table 6-10 Module Factory Parameter:

| Item Model | Operation<br>Frequency<br>(MHZ) | ID Address<br>(HEX) | Factory<br>Channel | Air Speed<br>(Kbps) | Baud Rate<br>(bps) | UART<br>Format | Transmit<br>Power<br>(mW) |
|------------|---------------------------------|---------------------|--------------------|---------------------|--------------------|----------------|---------------------------|
| AS69-T20   | 2400                            | 0x1234              | 150                | 250                 | 9600               | 8N1            | 100                       |

http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009



## 7. Module Functions

### 7.1 Overview of Module Functions

### Table 7-1 Module Function Form

| Module Function              | Data Format of Transmitter | Data Format<br>of Receiver | Function Introduction                                                                                                                                                    |
|------------------------------|----------------------------|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transparent<br>broadcasting  | User data                  | User data                  | The data sent by random module can be received by the modules with the same address and channel. The data transmission is transparent. What is sent is what is received. |
| Half- duplex<br>transmission | user data                  | User data                  | The module can only transmit in one direction at the same<br>time, and data transmission and reception cannot be<br>performed simultaneously.                            |
| Half- duplex<br>transmission | user data                  | User data                  | Module can be transmitted in both directions, data can be sent and received at the same time                                                                             |

### 7.2 Detailed Module Functions

### 7.2.1. Transparent Broadcasting

### i. Function Description

The data sent by random module can be received by the modules with the same address and channel. The data transmission is transparent. What is sent is what is received.

### ii. Module Setting

- 1. MD0 = 0, MD1 = 0
- 2. The 7th bit of the OPTION Special Function Register needs to be configured to 0, transparent transmission mode.
- 3. The addresses of the transmitter and the receiver are set to the same value.
- 4. The channels of the transmitter and the receiver are set to the same value.

### For Example

Table 7-2

|                   | Transmitter              | Receiver       |                          |  |
|-------------------|--------------------------|----------------|--------------------------|--|
| Module<br>Address | 0x1234 (factory default) | Module Address | 0x1234 (factory default) |  |
| Module<br>Channel | 0x17 (factory default)   | Module Channel | 0x17 (factory default)   |  |
| Sonding Data      | User data                |                | User data                |  |
| Sending Data      | 0x11 0x22 0x33           | Output Data    | 0x11 0x22 0x33           |  |

### 7.2.2 Half-Duplex Transmission

### i. Function Description

When the module performs high-speed data transmission, it does not limit the packet length and can only perform one-way transmission. Data cannot be received when sending data, and data cannot be sent when receiving data.

### ii. Module Setting

- 1. MD0 = 0, MD1 = 0
- 2. The addresses of the transmitter and the receiver can be same.
- 3. The channels of the transmitter and the receiver can be same.

### iii. For Example

Table 7-3



http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009

|                   | Transmitter                                                               | Receiver          |                |  |
|-------------------|---------------------------------------------------------------------------|-------------------|----------------|--|
| Module<br>Address | 0x1234                                                                    | Module<br>Address | 0x1234         |  |
| Module<br>Channel | 0x00                                                                      | Module<br>Channel | 0x00           |  |
| Sending Data      | Receiver address high + receiver address low +<br>receiver channel + data | Output Data       | User data      |  |
| Sending Data      | 0x56 0x78 0x18 0x11 0x22 0x33                                             |                   | 0x11 0x22 0x33 |  |

### 7.2.3 Full-Duplex Transmission

#### i. Function Description

When the module performs high-speed data transmission, it does not limit the packet length and transmits in both directions. Sending data can receive data at the same time, and can send data at the same time when receiving data.

#### ii. Module Setting

- 1. MD0 = 0, MD1 = 0
- 2. The addresses of the transmitter and the receiver are set to the same value.
- 3. The channels of the transmitter and the receiver are set to the same value.

#### iii. For Example

### Table 7-4

|                   | Transmitter    | Receiver                                     |                |  |
|-------------------|----------------|----------------------------------------------|----------------|--|
| Module<br>Address | 0x1234         | Module<br>Address                            | 0x1234         |  |
| Module<br>Channel | 0x00           | Module<br>Channel                            | 0x00           |  |
| Sending           | User data      | Output Data                                  | user data      |  |
| Data              | 0x11 0x22 0x33 | Address 0x123<br>Module 0x00<br>Channel 0x00 | 0x11 0x22 0x33 |  |



## 8. Sequence Diagram

### 8.1 Sequence Diagram of Data Transmission



### 8.2 Sequence Diagram of Module Switch

When the module switches from any operation mode to the next operation mode, there will be a switching delay T\_sc. After switching to the next operation mode, the module will always work in the operation mode after the switching, if the module does not perform other operation mode switching. The operation mode switching has nothing to do with the previous operation mode of the module. The programmer only needs to perform the mode switching delay during the switching process, then selects MD0 and MD1 pins of low latency operation mode for the high- and low-level operations. And you can switch to the desired operation mode.



### Table 8-1

| Symbol | Explanation                                                                   | Min Value | Typical Value | Max Value | Unit |
|--------|-------------------------------------------------------------------------------|-----------|---------------|-----------|------|
| T1     | Wait till the last data packet is transmitted to make sure the module is idle |           | 2             |           | ms   |
| T2     | Debounce delay                                                                |           | 3             |           | ms   |
| Т3     | Start modes switch                                                            |           | 3             |           | ms   |
| T4     | To tell if the mode switch is done                                            |           | 2             |           | ms   |
| T_sc   | Mode switch delay                                                             |           |               |           | ms   |

#### Remarks:

Modes can be switched when AUX is high level, at this time, the module is ideal; If AUX is low level, it means the module is busy. The sending (receiving) is not empty, the data has not been sent (received), and the user needs to add a delay. After waiting for the data to be sent and received, the working mode can be switched.

http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009



### 8.3 Sequence Diagram of Module Command

#### Sequence Diagram of Command as Below:

### 8.3.1 Command of Parameter Configuration



#### 8.3.2 Command of Reading Configured Parameter



#### 8.2.3 Command of Reading Module Hardware Version



### 8.2.4 Command of Module Reset



#### 8.3.5 command of restoring default parameters



### 8.3.6 Handshake Command



http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009



### 8.3.7. Command of reading module software version



### Remarks:

### Table 8-1

| Parameter name                                    | T_answer  | Description                               | Min<br>value | Typical<br>value | Max<br>value | Unit |
|---------------------------------------------------|-----------|-------------------------------------------|--------------|------------------|--------------|------|
|                                                   | T_C0/C2   | Parameter configuration delay             |              | 27.53            |              | ms   |
|                                                   | T_C1      | Reading module configured parameter delay |              | 3.2              |              | ms   |
|                                                   | T_C3      | Reading module hardware version delay     |              | 3.27             |              | ms   |
|                                                   | T_C4      | Waiting module reset delay                |              |                  |              | ms   |
| Command response                                  | T_C5      | Reading module voltage delay              |              | 27.73            |              | ms   |
| delay                                             | T_C6      | Configuring module encryption key delay   |              |                  |              | ms   |
|                                                   | T_C9      | Restoring default parameter delay         |              | 3.6              |              | ms   |
|                                                   | T_E1      | Handshake response delay                  |              | 27.53            |              | ms   |
|                                                   | T_F3      | Reading module software version delay     |              | 3.2              |              | ms   |
|                                                   | T_AF3/AF4 | Reading RSSI delay                        |              |                  |              | ms   |
| Delay of waiting for data transmission completion | T_Packet  | Delay of one data packet transmission     |              |                  |              | ms   |

http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009



## 9. Package Information

### 9.1 Machine Size (unit: mm)



### 9.2 Reference Pad Design (unit: mm)



http://en.ashining.com jack@ashining.com WhatsApp/Mobile/WeChat: +86 13017797009



## 10. Package Manner

### 10.1 Electrostatic Bag Package



10.2 Pallet Package (unit: mm)



# **Important Remarks and Disclaimers**

As the hardware and software of the product continue to improve, this manual may be subject to change, and the final version of the manual shall prevail.

Users of this product need to pay attention to the product dynamics on the official website, so that users can get the latest information of this product in time.

The pictures and diagrams used in this manual to explain the functions of this product are for reference only.

The measured data in this specification are all measured by our company at room temperature for reference only. Please refer to the actual measurement for details.

Chengdu Ashining Technology Co., Ltd. reserves the right of final interpretation and modification of all contents in this manual