- Generates Either Odd or Even Parity for Nine Data Lines - · Cascadable for n-Bits - Can Be Used to Upgrade Existing Systems using MSI Parity Circuits - Typical Data-to-Output Delay of Only 14 ns for 'S280 and 33 ns for 'LS280 - Typical Power Dissipation: 'LS280 . . . 80 mW 'S280 . . . 335 mW #### **FUNCTION TABLE** | NUMBER OF INPUTS A | OUTP | UTS | |----------------------|-------|--------------| | THRU I THAT ARE HIGH | ΣΕVΕΝ | Σ ODD | | 0, 2, 4, 6, 8 | Н | L | | 1, 3, 5, 7, 9 | L | Н | H = high level, L = low level #### logic symbol† [†]This symbol is in accordance with ANSI/IEEE Std. 91-1984 and IEC Publication 617-12. Pin numbers shown are for D, J, N, and W packages. # SN54LS280, SN54S280 J OR W PACKAGE SN74LS280, SN74S280 D OR N PACKAGE (TOP VIEW) G 1 14 14 VCC H 2 13 F NC 3 12 E I 4 11 D ΣΕVEN 5 10 C ΣΟDD 6 9 B SN54LS280, SN54S280 . . . FK PACKAGE (TOP VIEW) 8 GND NC - No internal connection #### description These universal, monolithic, nine-bit parity generators/checkers utilize Schottky-clamped TTL high-performance circuitry and feature odd/even outputs to faciliate operation of either odd or even parity application. The word-length capability is easily expanded by cascading as shown under typical application data. Series 54LS/74LS and Series 54S/74S parity generators/checkers offer the designer a trade-off between reduced power consumption and high performance. These devices can be used to upgrade the performance of most systems utilizing the '180 parity generator/checker. Although the 'LS280 and 'S280 are implemented without expander inputs, the corresponding function is provided by the availability of an input at pin 4 and the absence of any internal connection at pin 3. This permits the 'LS280 and 'S280 to be substituted for the '180 in existing designs to produce an identical function even if 'LS280's and 'S280's are mixed with existing '180's. These devices are fully compatible with most other TTL circuits. All 'LS280 and 'S280 inputs are buffered to lower the drive requirements to one Series 54LS/74LS or Series 54S/74S standard load, respectively. # SN54LS280, SN54S280, SN74LS280, SN74S280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS SDLS152 - DECEMBER 1972 - REVISED MARCH 1988 #### schematics of inputs and outputs # absolute maximum ratings over operating free-air temperature range (unless otherwise noted) | Supply voltage (see Note 1) | 7 V | |---|-----------------| | Input voltage: 'LS280 | | | 'S280 | | | Operating free-air temperature range: SN54' | – 55°C to 125°C | | SN74' | 0°C to 70°C | | Storage temperature range | | | NOTE 1: Voltage values are with respect to network ground terminal. | | # SN54LS280, SN54S280, SN74LS280, SN74S280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS SDLS152 - DECEMBER 1972 - REVISED MARCH 1988 recommended operating conditions | | | | SN54LS280 | | | SI | UNIT | | | |----------|--------------------------------|-----|-----------|-----|-------|------|------|-------|------| | | | MI | V | NOM | MAX | MIN | NOM | MAX | UNIT | | Vcc | Supply voltage | 4. | 5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V | | v_{IH} | High-level input voltage | | 2 | | | 2 | | | V | | VIL | Low-level input voltage | | | | 0.7 | | | 8.0 | V | | Іон | High-level output current | | | | - 0.4 | | | - 0.4 | mA | | loL | Low-level output current | | | | 4 | | | 8 | mA | | TA | Operating free-air temperature | - 5 | 5 | | 125 | 0 | | 70 | °C | # electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | PARAMETER | | TEST CONDIT | IONIC | SI | SN54LS280 | | SI | 80 | LINUT | | | |------------------|--|--|------------------------|------|-----------|-------|------|------|--------------|------|--| | ·Allancien | | TEST CONDIT | 10143 | MIN | TYP‡ | MAX | MIN | TYP‡ | MAX | UNIT | | | VIK | V _{CC} = MIN, | $I_1 = -18 \text{ mA}$ | | | | 1.5 | | | – 1.5 | V | | | V _{OH} | V _{CC} = MIN,
V _{IL} = MAX, | V _{IH} = 2 V,
I _{OH} = - 0.4 m/ | Α | 2.5 | 3.4 | | 2.7 | 3.4 | | V | | | VOL | V _{CC} = MIN,
V _{II} = MAX | V _{IH} = 2 V, | I _{OL} = 4 mA | | 0.25 | 0.4 | | 0.25 | 0.4 | V | | | L ₁ | V _{CC} = MAX, | V ₁ = 7 V | 100 | | | 0.1 | | 0.00 | 0.1 | mA | | | l _{IH} | V _{CC} = MAX, | V _I = 2.7 V | | | | 20 | | * | 20 | μА | | | Ι _Ι L | V _{CC} = MAX, | V _I = 0.4 V | | | | - 0.4 | | | - 0.4 | mA | | | los§ | V _{CC} = MAX | | | - 20 | | 100 | - 20 | | 100 | mA | | | Icc | V _{CC} = MAX, | See Note 2 | | | 16 | 27 | | 16 | 27 | mA | | [†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. # switching characteristics, V_{CC} = 5 V, T_A = 25°C | PARAMETER¶ | FROM
(INPUT) | TO
(OUTPUT) | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|-----------------|----------------|---|-----|-----|-----|------| | tPLH | Data | ΣEven | C15 -5 B210 | | 33 | 50 | | | ^t PHL | | 2 Even | $C_L = 15 \text{ pF}, R_L = 2 \text{ k}\Omega,$ Inputs not under test at 0 V. | | 29 | 45 | ns | | tPLH t | Data | Σ Odd | See Note 3 | | 23 | 35 | | | tPHL | 5610 | 2 000 | See Note 3 | | 31 | 50 | ns | $[\]P_{ ext{tp}_{LH}}$ \equiv propagation delay time, low-to-high-level output; $ext{tp}_{HL}$ \equiv propagation delay time, high-to-low-level output NOTE 3: Load circuits and voltage waveforms are shown in Section 1. [‡] All typical values are at V_{CC} = 5 V, T_A = 25°C. § Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second. NOTE 2: I_{CC} is measured with all inputs grounded and all outputs open. ## SN54LS280, SN54S280, SN74LS280, SN74S280 9-BIT ODD/EVEN PARITY GENERATORS/CHECKERS SDLS152 - DECEMBER 1972 - REVISED MARCH 1988 #### recommended operating conditions | | S | SN54S280 | | | SN74S280 | | | |------------------------------------|-----|----------|-----|------|----------|------|------| | | MIN | NOM | MAX | MIN | NOM | MAX | UNIT | | Supply voltage, V _{CC} | 4.5 | 5 | 5.5 | 4.75 | 5 | 5.25 | V | | High-level output current, IOH | | | -1 | | | -1 | mA | | Low-level output current, IOL | | | 20 | | | 20 | mA | | Operating free-air temperature, TA | -55 | | 125 | 0 | | 70 | °C | #### electrical characteristics over recommended operating free-air temperature range (unless otherwise noted) | | PARAMETER | TEST CONDITIONS | 1 | MIN | TYP‡ | MAX | UNIT | |-----------------|--|--|----------|-----|-----------|------|------| | VIH | High-level input voltage | | | 2 | | | V | | VIL | Low-level input voltage | | | | ········· | 0.8 | V | | VIK | Input clamp voltage | V _{CC} = MIN, I _I = -18 mA | | | | -1.2 | V | | Vон | High-level output voltage | V _{CC} = MIN, V _{IH} = 2 V, | SN54S' | 2.5 | 3.4 | | ., | | , OH | | V _{IL} = 0.8 V, I _{OH} = -1 mA | SN74S' | 2.7 | 3.4 | | \ \ | | VOL | Low-level output voltage | V _{CC} = MIN, V _{IH} = 2 V, | | | | 0.5 | V | | - 02 | | V _{IL} = 0.8 V, I _{OL} = 20 mA | | | | 0.5 | \ \ | | Ц | Input current at maximum input voltage | V _{CC} = MAX, V _I = 5.5 V | | | | 1 | mA | | [‡] IH | High-level input current | V _{CC} = MAX, V ₁ = 2.7 V | | | | 50 | μА | | ΊL | Low-level input current | V _{CC} = MAX, V _I = 0.5 V | | | | -2 | mA | | los | Short-circuit output current§ | V _{CC} = MAX | | -40 | * | -100 | mA | | | | VMAY SM C | N54S280 | | 67 | 99 | | | Icc | Supply current | | N74S280 | | 67 | 105 | mA | | ,,,, | ouppry current | V _{CC} = MAX, T _A = 125°C,
See Note 2 | N54S280N | | | 94 | mA | $^{^\}dagger_{\perp}$ For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions. NOTE 2: I_{CC} is measured with all inputs grounded and all outputs open. ## switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ | PARAMETER¶ | FROM
(INPUT) | TO
(OUTPUT) | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |------------------|-----------------|--|-----------------|------|------|-----|------| | tpLH | Data | Σ Even | | | 14 | 21 | | | tPHL | Data | $C_L = 15 \mathrm{pF}, \; R_L = 280 \Omega,$ | - | 11.5 | 18 | ns | | | t _{PLH} | Data | Σ Odd | See Note 3 | | 14 | 21 | | | t _{PHL} | Data | 2 Odd | | | 11.5 | 18 | ns | $[\]P_{\text{tpLH}} = \text{propagation delay time, low-to-high-level output: } t_{\text{PHL}} = \text{propagation delay time, high-to-low-level output}$ NOTE 3: Load circuits and voltage waveforms are shown in Section 1. $[\]ddagger$ All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. Not more than one output should be shorted at a time and duration of the short circuit should not exceed one second. #### logic diagram (positive logic) Pin numbers shown are for D, J, N, and W packages. #### TYPICAL APPLICATION DATA #### **IMPORTANT NOTICE** Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability. TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK. In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards. TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof. Copyright © 1999, Texas Instruments Incorporated