INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # **74HC/HCT373**Octal D-type transparent latch; 3-state Product specification File under Integrated Circuits, IC06 September 1993 # Octal D-type transparent latch; 3-state #### 74HC/HCT373 #### **FEATURES** - 3-state non-inverting outputs for bus oriented applications - Common 3-state output enable input - Functionally identical to the "563", "573" and "533" - · Output capability: bus driver - I_{CC} category: MSI #### **GENERAL DESCRIPTION** The 74HC/HCT373 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT373 are octal D-type transparent latches featuring separate D-type inputs for each latch and 3-state outputs for bus oriented applications. A latch enable (LE) input and an output enable (\overline{OE}) input are common to all latches. The "373" consists of eight D-type transparent latches with 3-state true outputs. When LE is HIGH, data at the D_n inputs enters the latches. In this condition the latches are transparent, i.e. a latch output will change state each time its corresponding D-input changes. When LE is LOW the latches store the information that was present at the D-inputs a set-up time preceding the HIGH-to-LOW transition of LE. When $\overline{\text{OE}}$ is LOW, the contents of the 8 latches are available at the outputs. When $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance OFF-state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the latches. The "373" is functionally identical to the "533", "563" and "573", but the "563" and "533" have inverted outputs and the "563" and "573" have a different pin arrangement. #### **QUICK REFERENCE DATA** $GND = 0 \text{ V}; T_{amb} = 25 \, ^{\circ}\text{C}; t_r = t_f = 6 \text{ ns}$ | SYMBOL | PARAMETER | CONDITIONS | TYP | ICAL | UNIT | |-------------------------------------|---|---|-----|------|------| | | PARAMETER | CONDITIONS | нс | нст | | | t _{PHL} / t _{PLH} | propagation delay | C _L = 15 pF; V _{CC} = 5 V | | | | | | D _n to Q _n | | 12 | 14 | ns | | | LE to Q _n | | 15 | 13 | ns | | C _I | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per latch | notes 1 and 2 | 45 | 41 | pF | #### **Notes** - 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): - $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where: - f_i = input frequency in MHz - fo = output frequency in MHz - $\sum (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs}$ - C_L = output load capacitance in pF - V_{CC} = supply voltage in V - 2. For HC the condition is $V_1 = \text{GND}$ to V_{CC} . For HCT the condition is $V_1 = \text{GND}$ to $V_{CC} 1.5 \text{ V}$ #### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". # Octal D-type transparent latch; 3-state # 74HC/HCT373 #### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |----------------------------|----------------------------------|--| | 1 | ŌĒ | 3-state output enable input (active LOW) | | 2, 5, 6, 9, 12, 15, 16, 19 | Q ₀ to Q ₇ | 3-state latch outputs | | 3, 4, 7, 8, 13, 14, 17, 18 | D ₀ to D ₇ | data inputs | | 10 | GND | ground (0 V) | | 11 | LE | latch enable input (active HIGH) | | 20 | V _{CC} | positive supply voltage | # Octal D-type transparent latch; 3-state ## 74HC/HCT373 #### **FUNCTION TABLE** | OPERATING | II. | IPUT | S | INTERNAL | OUTPUTS | | | |------------------------------------|--------|--------|----------------|----------|----------------------------------|--|--| | MODES | ŌΕ | LE | D _n | LATCHES | Q ₀ to Q ₇ | | | | enable and read | L | Н | L | L | L | | | | register
(transparent
mode) | L | Н | Н | Н | Н | | | | latch and | L | L | I | L | L | | | | read register | L | L | h | Н | Н | | | | latch register and disable outputs | H
H | X
X | X
X | X
X | Z
Z | | | #### **Notes** - 1. H = HIGH voltage level - h = HIGH voltage level one set-up time prior to the HIGH-to-LOW LE transition - L = LOW voltage level - I = LOW voltage level one set-up time prior to the HIGH-to-LOW LE transition - X = don't care - Z = high impedance OFF-state # Octal D-type transparent latch; 3-state 74HC/HCT373 #### DC CHARACTERISTICS FOR 74HC For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI #### **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|--|-----------------------|----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------|------------------------|-----------| | SYMBOL | PARAMETER | 74HC | | | | | | | UNIT | | WAVEFORMO | | | | +25 | | | -40 to +85 | | -40 to +125 | | UNII | V _{CC}
(V) | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | (-, | | | t _{PHL} / t _{PLH} | propagation delay D _n to Q _n | | 41
15
12 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Fig.7 | | t _{PHL} / t _{PLH} | propagation delay
LE to Q _n | | 50
18
14 | 175
35
30 | | 220
44
37 | | 265
53
45 | ns | 2.0
4.5
6.0 | Fig.8 | | t _{PZH} / t _{PZL} | 3-state output enable time \overline{OE} to Q_n | | 44
16
13 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Fig.9 | | t _{PHZ} / t _{PLZ} | 3-state output disable time
OE to Q _n | | 47
17
14 | 150
30
26 | | 190
38
33 | | 225
45
38 | ns | 2.0
4.5
6.0 | Fig.9 | | t _{THL} / t _{TLH} | output transition time | | 14
5
4 | 60
12
10 | | 75
15
13 | | 90
18
15 | ns | 2.0
4.5
6.0 | Fig.7 | | t _W | LE pulse width
HIGH | 80
16
14 | 17
6
5 | | 100
20
17 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig.8 | | t _{su} | set-up time
D _n to LE | 50
10
9 | 14
5
4 | | 65
13
11 | | 75
15
13 | | ns | 2.0
4.5
6.0 | Fig.10 | | t _h | hold time
D _n to LE | 5
5
5 | -8
-3
-2 | | 5
5
5 | | 5
5
5 | | ns | 2.0
4.5
6.0 | Fig.10 | # Octal D-type transparent latch; 3-state 74HC/HCT373 #### DC CHARACTERISTICS FOR 74HCT For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI #### Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |----------------|-----------------------| | D _n | 0.30 | | LE | 1.50 | | ŌE | 1.00 | #### **AC CHARACTERISTICS FOR 74HCT** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|--|-----------------------|------|------|------------|------|-------------|------|------|------------------------|-----------| | SYMBOL | PARAMETER | 74HCT | | | | | | | | | WAVEFORMS | | | | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC}
(V) | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | (-, | | | t _{PHL} / t _{PLH} | propagation delay D _n to Q _n | | 17 | 30 | | 38 | | 45 | ns | 4.5 | Fig.7 | | t _{PHL} / t _{PLH} | propagation delay
LE to Q _n | | 16 | 32 | | 40 | | 48 | ns | 4.5 | Fig.8 | | t _{PZH} / t _{PZL} | 3-state output enable time
OE to Q _n | | 19 | 32 | | 40 | | 48 | ns | 4.5 | Fig.9 | | t _{PHZ} / t _{PLZ} | 3-state output disable time
OE to Q _n | | 18 | 30 | | 38 | | 45 | ns | 4.5 | Fig.9 | | t _{THL} / t _{TLH} | output transition time | | 5 | 12 | | 15 | | 18 | ns | 4.5 | Fig.7 | | t _W | LE pulse width
HIGH | 16 | 4 | | 20 | | 24 | | ns | 4.5 | Fig.8 | | t _{su} | set-up time
D _n to LE | 12 | 6 | | 15 | | 18 | | ns | 4.5 | Fig.10 | | t _h | hold time
D _n to LE | 4 | -1 | | 4 | | 4 | | ns | 4.5 | Fig.10 | # Octal D-type transparent latch; 3-state ### 74HC/HCT373 #### **AC WAVEFORMS** Fig.7 Waveforms showing the input (D_n) to output (Q_n) propagation delays and the output transition times. Fig.8 Waveforms showing the latch enable input (LE) pulse width, the latch enable input to output (Q_n) propagation delays and the output transition times. # Octal D-type transparent latch; 3-state 74HC/HCT373 #### **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines". This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.