INTEGRATED CIRCUITS # DATA SHEET For a complete data sheet, please also download: - The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications - The IC06 74HC/HCT/HCU/HCMOS Logic Package Information - The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines # **74HC/HCT646**Octal bus transceiver/register; 3-state Product specification File under Integrated Circuits, IC06 September 1993 ### **74HC/HCT646** ### **FEATURES** - Independent register for A and B buses - Multiplexed real-time and stored data - · Output capability: bus driver - I_{CC} category: MSI ### **GENERAL DESCRIPTION** The 74HC/HCT646 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A. The 74HC/HCT646 consist of bus transceiver circuits with 3-state outputs, D-type flip-flops, and control circuitry arranged for multiplexed transmission of data directly from the internal registers. Data on the "A" or "B" bus will be clocked into the registers as the appropriate clock (CP_{AB} and CP_{BA}) goes to a HIGH logic level. Output enable (\overline{OE}) and direction (DIR) inputs are provided to control the transceiver function. In the transceiver mode, data present at the high-impedance port may be stored in either the "A" or "B" register, or in both. The select source inputs (S_{AB} and S_{BA}) can multiplex stored and real-time (transparent mode) data. The direction (DIR) input determines which bus will receive data when \overline{OE} is active (LOW). In the isolation mode (\overline{OE} = HIGH), "A" data may be stored in the "B" register and/or "B" data may be stored in the "A" register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two buses, A or B, may be driven at a time. The "646" is functionally identical to the "648", but has non-inverting data paths. ### **QUICK REFERENCE DATA** $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$ | SYMBOL | PARAMETER | CONDITIONS | TYF | UNIT | | |-------------------------------------|--|---|-----|------|------| | STIVIBUL | PARAMETER | CONDITIONS | НС | нст | UNIT | | t _{PHL} / t _{PLH} | propagation delay A _n , B _n to B _n , A _n | C _L = 15 pF; V _{CC} = 5 V | 11 | 13 | ns | | f _{max} | maximum clock frequency | | 69 | 85 | MHz | | C _I | input capacitance | | 3.5 | 3.5 | pF | | C _{PD} | power dissipation capacitance per channel | notes 1 and 2 | 30 | 33 | pF | ### **Notes** 1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW): $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where: f_i = input frequency in MHz f_o = output frequency in MHz $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$ C_L = output load capacitance in pF V_{CC} = supply voltage in V 2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V ### **ORDERING INFORMATION** See "74HC/HCT/HCU/HCMOS Logic Package Information". # 74HC/HCT646 ### **PIN DESCRIPTION** | PIN NO. | SYMBOL | NAME AND FUNCTION | |--------------------------------|----------------------------------|--| | 1 | CP _{AB} | A to B clock input (LOW-to-HIGH, edge-triggered) | | 2 | S _{AB} | select A to B source input | | 3 | DIR | direction control input | | 4, 5, 6, 7, 8, 9, 10, 11 | A ₀ to A ₇ | A data inputs/outputs | | 12 | GND | ground (0 V) | | 20, 19, 18, 17, 16, 15, 14, 13 | B ₀ to B ₇ | B data inputs/outputs | | 21 | ŌĒ | output enable input (active LOW) | | 22 | S _{BA} | select B to A source input | | 23 | CP _{BA} | B to A clock input (LOW-to-HIGH, edge-triggered) | | 24 | V _{CC} | positive supply voltage | # Octal bus transceiver/register; 3-state # 74HC/HCT646 ### **FUNCTION TABLE** | | | INPL | JTS ⁽¹⁾ | | | DATA | 1/O ⁽²⁾ | FUNCTION | | | |--------|--------|------------------|--------------------|-----------------|-----------------|----------------------------------|----------------------------------|--|--|--| | ŌĒ | DIR | CP _{AB} | CPBA | S _{AB} | S _{BA} | A ₀ to A ₇ | B ₀ to B ₇ | FUNCTION | | | | H
H | X
X | H or L
↑ | H or L
↑ | X
X | X
X | input | input | isolation
store A and B data | | | | L
L | L
L | X
X | X
H or L | X
X | L
H | output | input | real-time B data to A bus stored B data to A bus | | | | L
L | H
H | X
H or L | X
X | L
H | X | input | output | real-time A data to B bus stored A data to B bus | | | ### **Notes** - 1. H = HIGH voltage level - L = LOW voltage level - X = don't care - ↑ = LOW-to-HIGH level transition - 2. The data output functions may be enabled or disabled by various signals at the $\overline{\text{OE}}$ and DIR inputs. Data input functions are always enabled, i.e., data at the bus inputs will be stored on every LOW-to-HIGH transition on the clock inputs. # 74HC/HCT646 # Octal bus transceiver/register; 3-state 74HC/HCT646 ### DC CHARACTERISTICS FOR 74HC For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI ### **AC CHARACTERISTICS FOR 74HC** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | | | • | Γ _{amb} (° | C) | | | | TEST CONDITIONS | | |-------------------------------------|---|-----------------|----------------|-----------------|-----------------------|-----------------|-----------------|-----------------|------|-------------------|-----------------| | CVMDOL | PARAMETER | | 74HC | | | | | | | | | | SYMBOL | | +25 | | | -40 to +85 -40 to + | | | o +125 | UNIT | V _{CC} | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. | | (*) | | | t _{PHL} / t _{PLH} | propagation delay $A_n,B_n \text{ to } B_n,A_n$ | | 39
14
11 | 135
27
23 | | 170
34
29 | | 205
41
35 | ns | 2.0
4.5
6.0 | Fig.6 | | t _{PHL} / t _{PLH} | propagation delay
CP _{AB} ,CP _{BA} to B _n ,A _n | | 66
24
19 | 220
44
37 | | 275
55
47 | | 330
66
56 | ns | 2.0
4.5
6.0 | Fig.7 | | t _{PHL} / t _{PLH} | propagation delay S _{AB} ,S _{BA} to B _n ,A _n | | 55
20
16 | 190
38
32 | | 240
48
41 | | 285
57
48 | ns | 2.0
4.5
6.0 | Fig.8 | | t _{PZH} / t _{PZL} | 3-state output enable time OE to A _n ,B _n | | 47
17
14 | 175
35
30 | | 220
44
37 | | 265
53
45 | ns | 2.0
4.5
6.0 | Fig.9 | | t _{PHZ} / t _{PLZ} | 3-state output disable time \overline{OE} to A_n,B_n | | 58
21
17 | 175
35
30 | | 220
44
37 | | 265
53
45 | ns | 2.0
4.5
6.0 | Fig.9 | | t _{PZH} / t _{PZL} | 3-state output enable time DIR to A _n ,B _n | | 50
18
14 | 175
35
30 | | 220
44
37 | | 265
53
45 | ns | 2.0
4.5
6.0 | Fig.10 | | t _{PHZ} / t _{PLZ} | 3-state output disable time DIR to A _n ,B _n | | 50
18
14 | 175
35
30 | | 220
44
37 | | 265
53
45 | ns | 2.0
4.5
6.0 | Fig.10 | | t _{THL} / t _{TLH} | output transition time | | 14
5
4 | 60
12
10 | | 75
15
13 | | 90
18
15 | ns | 2.0
4.5
6.0 | Fig.6 and Fig.8 | | t _W | clock pulse width
HIGH or LOW
CP _{AB} or CP _{BA} | 80
16
14 | 25
9
7 | | 100
24
20 | | 120
24
20 | | ns | 2.0
4.5
6.0 | Fig.7 | | t _{su} | set-up time A _n ,B _n to CP _{AB} ,CP _{BA} | 60
12
10 | -3
-1
-1 | | 75
15
13 | | 90
18
15 | | ns | 2.0
4.5
6.0 | Fig.7 | | t _h | hold time
A _n ,B _n to CP _{AB} ,CP _{BA} | 35
7
6 | 6
2
2 | | 45
9
8 | | 55
11
9 | | ns | 2.0
4.5
6.0 | Fig.7 | | f _{max} | maximum clock pulse frequency | 6.0
30
35 | 21
63
75 | | 4.8
24
28 | | 4.0
20
24 | | MHz | 2.0
4.5
6.0 | Fig.7 | # Octal bus transceiver/register; 3-state 74HC/HCT646 ### **DC CHARACTERISTICS FOR 74HCT** For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications". Output capability: bus driver I_{CC} category: MSI ### Note to HCT types The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below. | INPUT | UNIT LOAD COEFFICIENT | |-----------------------------------|-----------------------| | S _{AB} , S _{BA} | 0.60 | | A_0 to A_7 and B_0 to B_7 | 0.75 | | INPUT | UNIT LOAD COEFFICIENT | |-------------------------------------|-----------------------| | CP _{AB} , CP _{BA} | 1.50 | | ŌĒ | 1.50 | | DIR | 1.25 | # Octal bus transceiver/register; 3-state # 74HC/HCT646 ### **AC CHARACTERISTICS FOR 74HCT** $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$ | | | T _{amb} (°C) | | | | | | | | TEST CONDITIONS | | |-------------------------------------|---|-----------------------|------|-------|------------|------|-------------|------|------|-----------------|-----------------| | SYMBOL | PARAMETER | | | 74HCT | | | | | UNIT | | | | STIMBUL | PARAMETER | +25 | | | -40 to +85 | | -40 to +125 | | UNIT | V _{CC} | WAVEFORMS | | | | min. | typ. | max. | min. | max. | min. | max. |] | (•, | | | t _{PHL} / t _{PLH} | propagation delay A _n ,B _n to B _n ,A _n | | 16 | 30 | | 38 | | 45 | ns | 4.5 | Fig.6 | | t _{PHL} / t _{PLH} | propagation delay
CP _{AB} ,CP _{BA} to B _n ,A _n | | 23 | 44 | | 55 | | 66 | ns | 4.5 | Fig.7 | | t _{PHL} / t _{PLH} | propagation delay S _{AB} ,S _{BA} to B _n ,A _n | | 26 | 46 | | 58 | | 69 | ns | 4.5 | Fig.8 | | t _{PZH} / t _{PZL} | $\frac{\text{3-state output enable time}}{\text{OE}} \text{ to } A_n, B_n$ | | 21 | 40 | | 50 | | 60 | ns | 4.5 | Fig.9 | | t _{PHZ} / t _{PLZ} | $\frac{\text{3-state output disable time}}{\text{OE}} \text{ to } A_n, B_n$ | | 20 | 35 | | 44 | | 53 | ns | 4.5 | Fig.9 | | t _{PZH} / t _{PZL} | 3-state output enable time DIR to A _n ,B _n | | 21 | 40 | | 50 | | 60 | ns | 4.5 | Fig.10 | | t _{PHZ} / t _{PLZ} | 3-state output disable time DIR to A _n ,B _n | | 21 | 35 | | 44 | | 53 | ns | 4.5 | Fig.10 | | t _{THL} / t _{TLH} | output transition time | | 5 | 12 | | 15 | | 18 | ns | 4.5 | Fig.6 and Fig.8 | | t _W | clock pulse width
HIGH or LOW
CP _{AB} or CP _{BA} | 16 | 8 | | 20 | | 24 | | ns | 4.5 | Fig.7 | | t _{su} | set-up time
A _n ,B _n to CP _{AB} ,CP _{BA} | 12 | 3 | | 15 | | 18 | | ns | 4.5 | Fig.7 | | t _h | hold time
A _n ,B _n to CP _{AB} ,CP _{BA} | 5 | 1 | | 5 | | 5 | | ns | 4.5 | Fig.7 | | f _{max} | maximum clock pulse frequency | 30 | 77 | | 24 | | 20 | | MHz | 4.5 | Fig.7 | 74HC/HCT646 ### **AC WAVEFORMS** (1) HC : V_M = 50%; V_I = GND to V_{CC} . HCT: V_M = 1.3 V; V_I = GND to 3 V. Fig. 6 Waveforms showing the input A_n, B_n to output B_n, A_n propagation delays and the output transition times. Fig.7 Waveforms showing the A_n,B_n to CP_{AB}, CP_{BA} set-up and hold times, clock CP_{AB},CP_{BA} pulse width, maximum clock pulse frequency and the CP_{AB},CP_{BA} to output B_n,A_n propagation delays. # Octal bus transceiver/register; 3-state # 74HC/HCT646 # 74HC/HCT646 ### **APPLICATION INFORMATION** # Octal bus transceiver/register; 3-state 74HC/HCT646 ### **PACKAGE OUTLINES** See "74HC/HCT/HCU/HCMOS Logic Package Outlines".