Silicon NPN Power Transistors ... for use in power amplifier and switching circuits, — excellent safe area limits. Complement to PNP 2N5194, 2N5195. #### *MAXIMUM RATINGS | Rating | Symbol | 2N5191 | 2N5192 | Unit | |--|-----------------------------------|-------------|--------|----------------| | Collector–Emitter Voltage | VCEO | 60 | 80 | Vdc | | Collector-Base Voltage | V _{CB} | 60 | 80 | Vdc | | Emitter-Base Voltage | V _{EB} | 5.0 | | Vdc | | Collector Current | IC | 4.0 | | Adc | | Base Current | ΙΒ | 1.0 | | Adc | | Total Power Dissipation @ T _C = 25°C
Derate above 25°C | PD | 40
320 | | Watts
mW/°C | | Operating and Storage Junction
Temperature Range | T _J , T _{stg} | -65 to +150 | | °C | #### THERMAL CHARACTERISTICS | Characteristic | Symbol | Max | Unit | |--------------------------------------|--------|------|------| | Thermal Resistance, Junction to Case | θЈС | 3.12 | °C | # 2N5191 2N5192* *ON Semiconductor Preferred Device 4 AMPERE POWER TRANSISTORS SILICON NPN 60-80 VOLTS 40 WATTS ### *ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |--|--------------------------------------|------------------|------------------|--------------------------|------| | OFF CHARACTERISTICS | | | | | | | Collector–Emitter Sustaining Voltage (1) (I _C = 0.1 Adc, I _B = 0) | 2N5191
2N5192 | VCEO(sus) | 60
80 | _ | Vdc | | Collector Cutoff Current (V _{CE} = 60 Vdc, I _B = 0) (V _{CE} = 80 Vdc, I _B = 0) | 2N5191
2N5192 | ICEO | _ | 1.0
1.0 | mAdc | | Collector Cutoff Current (VCE = 60 Vdc, VEB(off) = 1.5 Vdc) (VCE = 80 Vdc, VEB(off) = 1.5 Vdc) (VCE = 60 Vdc, VEB(off) = 1.5 Vdc, T _C = 125°C) (VCE = 80 Vdc, VEB(off) = 1.5 Vdc, T _C = 125°C) | 2N5191
2N5192
2N5191
2N5192 | ICEX | _
_
_
_ | 0.1
0.1
2.0
2.0 | mAdc | | Collector Cutoff Current (V _{CB} = 60 Vdc, I _E = 0) (V _{CB} = 80 Vdc, I _E = 0) | 2N5191
2N5192 | ICBO | _ | 0.1
0.1 | mAdc | | Emitter Cutoff Current (V _{BE} = 5.0 Vdc, I _C = 0) | | ^I EBO | _ | 1.0 | mAdc | ⁽¹⁾ Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$. Preferred devices are ON Semiconductor recommended choices for future use and best overall value. ^{*}Indicates JEDEC Registered Data. ### *ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Max | Unit | |---|--------------------------------------|-----------------|-----------------------|----------------|------| | ON CHARACTERISTICS | | | | | | | DC Current Gain (2) (I _C = 1.5 Adc, V _{CE} = 2.0 Vdc) (I _C = 4.0 Adc, V _{CE} = 2.0 Vdc) | 2N5191
2N5192
2N5191
2N5192 | h _{FE} | 25
20
10
7.0 | 100
80
— | _ | | Collector–Emitter Saturation Voltage (2) (I _C = 1.5 Adc, I _B = 0.15 Adc) (I _C = 4.0 Adc, I _B = 1.0 Adc) | | VCE(sat) | | 0.6
1.4 | Vdc | | Base–Emitter On Voltage (2)
(I _C = 1.5 Adc, V _{CE} = 2.0 Vdc) | | VBE(on) | _ | 1.2 | Vdc | | DYNAMIC CHARACTERISTICS | | | | | | | Current-Gain — Bandwidth Product (IC = 1.0 Adc, VCE = 10 Vdc, f = 1.0 MHz) | | fΤ | 2.0 | _ | MHz | ⁽²⁾ Pulse Test: Pulse Width $\leq 300 \,\mu\text{s}$, Duty Cycle $\leq 2.0\%$. ^{*}Indicates JEDEC Registered Data. Figure 1. DC Current Gain Figure 2. Collector Saturation Region Figure 3. "On" Voltages **Figure 4. Temperature Coefficients** Figure 5. Collector Cut-Off Region Figure 6. Effects of Base-Emitter Resistance Figure 7. Switching Time Equivalent Test Circuit Figure 8. Capacitance Figure 9. Turn-On Time Figure 11. Rating and Thermal Data Active-Region Safe Operating Area Figure 10. Turn-Off Time There are two limitations on the power handling ability of a transistor; average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 11 is based on $T_{J(pk)} = 150^{\circ}C$; T_{C} is variable depending on conditions. Second breakdown pulse limits are valid for duty cycles to 10% provided $T_{J(pk)} \le 150^{\circ}C$. At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. Figure 12. Thermal Response #### **DESIGN NOTE: USE OF TRANSIENT THERMAL RESISTANCE DATA** PEAK PULSE POWER = PP Figure A A train of periodical power pulses can be represented by the model shown in Figure A. Using the model and the device thermal response, the normalized effective transient thermal resistance of Figure 12 was calculated for various duty cycles. To find $\theta_{JC}(t)$, multiply the value obtained from Figure 12 by the steady state value θ_{JC} . Example: The 2N5190 is dissipating 50 watts under the following conditions: $t_1 = 0.1 \text{ ms}$, $t_p = 0.5 \text{ ms}$. (D = 0.2). Using Figure 12, at a pulse width of 0.1 ms and D = 0.2, the reading of $r(t_1, D)$ is 0.27. The peak rise in function temperature is therefore: $$\Delta T = r(t) \times PP \times \theta JC = 0.27 \times 50 \times 3.12 = 42.2 ^{\circ}C$$ # **PACKAGE DIMENSIONS** ## TO-225AA **CASE 77-09 ISSUE W** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.425 | 0.435 | 10.80 | 11.04 | | В | 0.295 | 0.305 | 7.50 | 7.74 | | С | 0.095 | 0.105 | 2.42 | 2.66 | | D | 0.020 | 0.026 | 0.51 | 0.66 | | F | 0.115 | 0.130 | 2.93 | 3.30 | | G | 0.094 | BSC | 2.39 BSC | | | Н | 0.050 | 0.095 | 1.27 | 2.41 | | J | 0.015 | 0.025 | 0.39 | 0.63 | | K | 0.575 | 0.655 | 14.61 | 16.63 | | M | 5° | TYP | 5° | TYP | | Q | 0.148 | 0.158 | 3.76 | 4.01 | | R | 0.045 | 0.065 | 1.15 | 1.65 | | S | 0.025 | 0.035 | 0.64 | 0.88 | | U | 0.145 | 0.155 | 3.69 | 3.93 | | ٧ | 0.040 | | 1.02 | | STYLE 1: PIN 1. EMITTER 2. COLLECTOR 3. BASE ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. #### **PUBLICATION ORDERING INFORMATION** #### Literature Fulfillment: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada **JAPAN**: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 **Phone**: 81–3–5740–2700 **Email**: r14525@onsemi.com ON Semiconductor Website: http://onsemi.com For additional information, please contact your local Sales Representative.