AXIAL LEAD CASE 017AA **PLASTIC** ## **5 Watt Surmetic 40 Zener Voltage Regulators** ### **1N53 Series** This is a complete series of 5 Watt Zener diodes with tight limits and better operating characteristics that reflect the superior capabilities of silicon-oxide passivated junctions. All this in an axial lead, transfer-molded plastic package that offers protection in all common environmental conditions. #### **Features** - Zener Voltage Range 3.3 V to 200 V - ESD Rating of Class 3 (>16 kV) per Human Body Model - Surge Rating of up to 180 W @ 8.3 ms - Maximum Limits Guaranteed on up to Six Electrical Parameters - Pb-Free Packages are Available* #### **Mechanical Characteristics** CASE: Void free, transfer-molded, thermosetting plastic FINISH: All external surfaces are corrosion resistant and leads are readily solderable #### MAXIMUM LEAD TEMPERATURE FOR SOLDERING PURPOSES: 260°C, 1/16 in. from the case for 10 seconds **POLARITY:** Cathode indicated by polarity band **MOUNTING POSITION: Any** #### **MAXIMUM RATINGS** | Rating | Symbol | Value | Unit | |--|-----------------------------------|-------------------------|-------| | Max. Steady State Power Dissipation
@ T _L = 25°C, Lead Length = 3/8 in | P _D | 5 | W | | Derate above 25°C | | 40 | mW/°C | | Junction-to-Lead Thermal Resistance | $\theta_{\sf JL}$ | 25 | °C/W | | Operating and Storage
Temperature Range | T _J , T _{stg} | -65 to +200
(Note 1) | °C | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. 1. Max operating temperature for DC conditions is 150°C, but not to exceed 200°C for pulsed conditions with low duty cycle or non-repetitive. #### MARKING DIAGRAM A = Assembly Location 1N53xxB = Device Number (Refer to Tables on Pages 3 & 4) YY = Year WW = Work Week ■ Pb-Free Package (Note: Microdot may be in either location) #### **ORDERING INFORMATION** | Device | Package | Shipping [†] | |--------------|-------------------------|-----------------------| | 1N53xxB, G | Axial Lead
(Pb-Free) | 1000 Units/Box | | 1N53xxBRL, G | Axial Lead
(Pb-Free) | 4000/Tape & Reel | †For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 1 ^{*}For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. # **ELECTRICAL CHARACTERISTICS** ($T_A = 25^{\circ}\text{C}$ unless otherwise noted, $V_F = 1.2 \text{ V Max}$ @ $I_F = 1.0 \text{ A}$ for all types) | Symbol | Parameter | |-----------------|---| | Vz | Reverse Zener Voltage @ I _{ZT} | | I _{ZT} | Reverse Current | | Z _{ZT} | Maximum Zener Impedance @ I _{ZT} | | I _{ZK} | Reverse Current | | Z _{ZK} | Maximum Zener Impedance @ I _{ZK} | | I _R | Reverse Leakage Current @ V _R | | V _R | Breakdown Voltage | | l _F | Forward Current | | V _F | Forward Voltage @ I _F | | I _R | Maximum Surge Current @ T _A = 25°C | | ΔV_{Z} | Reverse Zener Voltage Change | | I _{ZM} | Maximum DC Zener Current | #### ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 1.2 V Max @ I_F = 1.0 A for all types) | | | Zen | er Volta | age (No | te 3) | Zener Impedance (Note 3) Leakage Current | | | • | I _R | ΔV _Z | I _{ZM} | | |---------------------|---------|------|----------|---------|-------------------|---|-----------------------------------|-----------------|------------------|----------------|-----------------|-----------------|----------| | Device [†] | Device | ٧ | Z (Volts | s) | @ I _{ZT} | Z _{ZT} @ I _{ZT} | Z _{ZK} @ I _{ZK} | I _{ZK} | I _R @ | V _R | (Note 4) | (Note 5) | (Note 6) | | (Note 2) | Marking | Min | Nom | Max | mA | Ω | Ω | mA | μ Α Max | Volts | Α | Volts | mA | | 1N5333B | 1N5333B | 3.14 | 3.3 | 3.47 | 380 | 3 | 400 | 1 | 300 | 1 | 20 | 0.85 | 1440 | | 1N5334B | 1N5334B | 3.42 | 3.6 | 3.78 | 350 | 2.5 | 500 | 1 | 150 | 1 | 18.7 | 8.0 | 1320 | | 1N5335B | 1N5335B | 3.71 | 3.9 | 4.10 | 320 | 2 | 500 | 1 | 50 | 1 | 17.6 | 0.54 | 1220 | | 1N5336B | 1N5336B | 4.09 | 4.3 | 4.52 | 290 | 2 | 500 | 1 | 10 | 1 | 16.4 | 0.49 | 1100 | | 1N5337B | 1N5337B | 4.47 | 4.7 | 4.94 | 260 | 2 | 450 | 1 | 5 | 1 | 15.3 | 0.44 | 1010 | | 1N5338B | 1N5338B | 4.85 | 5.1 | 5.36 | 240 | 1.5 | 400 | 1 | 1 | 1 | 14.4 | 0.39 | 930 | | 1N5339B | 1N5339B | 5.32 | 5.6 | 5.88 | 220 | 1 | 400 | 1 | 1 | 2 | 13.4 | 0.25 | 865 | | 1N5340B | 1N5340B | 5.70 | 6.0 | 6.30 | 200 | 1 | 300 | 1 | 1 | 3 | 12.7 | 0.19 | 790 | | 1N5341B | 1N5341B | 5.89 | 6.2 | 6.51 | 200 | 1 | 200 | 1 | 1 | 3 | 12.4 | 0.1 | 765 | | 1N5342B | 1N5342B | 6.46 | 6.8 | 7.14 | 175 | 1 | 200 | 1 | 10 | 5.2 | 11.5 | 0.15 | 700 | | 1N5343B | 1N5343B | 7.13 | 7.5 | 7.88 | 175 | 1.5 | 200 | 1 | 10 | 5.7 | 10.7 | 0.15 | 630 | | 1N5344B | 1N5344B | 7.79 | 8.2 | 8.61 | 150 | 1.5 | 200 | 1 | 10 | 6.2 | 10 | 0.2 | 580 | | 1N5345B | 1N5345B | 8.27 | 8.7 | 9.14 | 150 | 2 | 200 | 1 | 10 | 6.6 | 9.5 | 0.2 | 545 | | 1N5346B | 1N5346B | 8.65 | 9.1 | 9.56 | 150 | 2 | 150 | 1 | 7.5 | 6.9 | 9.2 | 0.22 | 520 | | 1N5347B | 1N5347B | 9.50 | 10 | 10.5 | 125 | 2 | 125 | 1 | 5 | 7.6 | 8.6 | 0.22 | 475 | Devices listed in bold, italic are onsemi Preferred devices. Preferred devices are recommended choices for future use and best overall value. - 2. TOLERANCE AND TYPE NUMBER DESIGNATION: The JEDEC type numbers shown indicate a tolerance of ±5%. - ZENER VOLTAGE (V_Z) and IMPEDANCE (I_{ZT} and I_{ZK}): Test conditions for zener voltage and impedance are as follows: I_Z is applied 40 ±10 ms prior to reading. Mounting contacts are located 3/8" to 1/2" from the inside edge of mounting clips to the body of the diode (T_A = 25°C +8°C, -2°C). - 4. SURGE CURRENT (I_R): Surge current is specified as the maximum allowable peak, non-recurrent square-wave current with a pulse width, PW, of 8.3 ms. The data given in Figure 5 may be used to find the maximum surge current for a square wave of any pulse width between 1 ms and 1000 ms by plotting the applicable points on logarithmic paper. Examples of this, using the 3.3 V and 200 V zener are shown in Figure 6. Mounting contact located as specified in Note 2 (T_A = 25°C +8°C, -2°C). - VOLTAGE REGULATION (ΔV_Z): The conditions for voltage regulation are as follows: V_Z measurements are made at 10% and then at 50% of the I_Z max value listed in the electrical characteristics table. The test current time duration for each V_Z measurement is 40 ±10 ms. Mounting contact located as specified in Note 2 (T_A = 25°C +8°C, -2°C). - 6. MAXIMUM REGULATOR CURRENT (I_{ZM}): The maximum current shown is based on the maximum voltage of a 5% type unit, therefore, it applies only to the B-suffix device. The actual I_{ZM} for any device may not exceed the value of 5 watts divided by the actual V_Z of the device. T_L = 25°C at 3/8" maximum from the device body. †The "G" suffix indicates Pb-Free package or Pb-Free packages are available. ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted, V_F = 1.2 V Max @ I_F = 1.0 A for all types) | | | Zener Voltage (Note 8) | | Zener Impedance (Note 8) | | | Leakage
Current | | | ΔV _Z
(Note | I _{ZM} | | | |---------------------|---------|------------------------|----------|--------------------------|-------------------|-----------------------------------|-----------------------------------|-----------------|------------------|--------------------------|-----------------|-------|-----------| | Device [†] | Device | ٧ | Z (Volts | s) | @ I _{ZT} | Z _{ZT} @ I _{ZT} | Z _{ZK} @ I _{ZK} | I _{ZK} | I _R @ | V _R | (Note 9) | 10) | (Note 11) | | (Note 7) | Marking | Min | Nom | Max | mA | Ω | Ω | mA | μ Α Max | Volts | Α | Volts | mA | | 1N5348B | 1N5348B | 10.45 | 11 | 11.55 | 125 | 2.5 | 125 | 1 | 5 | 8.4 | 8.0 | 0.25 | 430 | | 1N5349B | 1N5349B | 11.4 | 12 | 12.6 | 100 | 2.5 | 125 | 1 | 2 | 9.1 | 7.5 | 0.25 | 395 | | 1N5350B | 1N5350B | 12.35 | 13 | 13.65 | 100 | 2.5 | 100 | 1 | 1 | 9.9 | 7.0 | 0.25 | 365 | | 1N5351B | 1N5351B | 13.3 | 14 | 14.7 | 100 | 2.5 | 75 | 1 | 1 | 10.6 | 6.7 | 0.25 | 340 | | 1N5352B | 1N5352B | 14.25 | 15 | 15.75 | 75 | 2.5 | 75 | 1 | 1 | 11.5 | 6.3 | 0.25 | 315 | | 1N5353B | 1N5353B | 15.2 | 16 | 16.8 | 75 | 2.5 | <i>75</i> | 1 | 1 | 12.2 | 6.0 | 0.3 | 295 | | 1N5354B | 1N5354B | 16.15 | 17 | 17.85 | 70 | 2.5 | 75 | 1 | 0.5 | 12.9 | 5.8 | 0.35 | 280 | | 1N5355B | 1N5355B | 17.1 | 18 | 18.9 | 65 | 2.5 | 75 | 1 | 0.5 | 13.7 | 5.5 | 0.4 | 264 | | 1N5356B | 1N5356B | 18.05 | 19 | 19.95 | 65 | 3 | 75 | 1 | 0.5 | 14.4 | 5.3 | 0.4 | 250 | | 1N5357B | 1N5357B | 19 | 20 | 21 | 65 | 3 | 75 | 1 | 0.5 | 15.2 | 5.1 | 0.4 | 237 | | 1N5358B | 1N5358B | 20.9 | 22 | 23.1 | 50 | 3.5 | <i>75</i> | 1 | 0.5 | 16.7 | 4.7 | 0.45 | 216 | | 1N5359B | 1N5359B | 22.8 | 24 | 25.2 | 50 | 3.5 | 100 | 1 | 0.5 | 18.2 | 4.4 | 0.55 | 198 | | 1N5360B | 1N5360B | 23.75 | 25 | 26.25 | 50 | 4 | 110 | 1 | 0.5 | 19 | 4.3 | 0.55 | 190 | | 1N5361B | 1N5361B | 25.65 | 27 | 28.35 | 50 | 5 | 120 | 1 | 0.5 | 20.6 | 4.1 | 0.6 | 176 | | 1N5362B | 1N5362B | 26.6 | 28 | 29.4 | 50 | 6 | 130 | 1 | 0.5 | 21.2 | 3.9 | 0.6 | 170 | | 1N5363B | 1N5363B | 28.5 | 30 | 31.5 | 40 | 8 | 140 | 1 | 0.5 | 22.8 | 3.7 | 0.6 | 158 | | 1N5364B | 1N5364B | 31.35 | 33 | 34.65 | 40 | 10 | 150 | 1 | 0.5 | 25.1 | 3.5 | 0.6 | 144 | | 1N5365B | 1N5365B | 34.2 | 36 | 37.8 | 30 | 11 | 160 | 1 | 0.5 | 27.4 | 3.5 | 0.65 | 132 | | 1N5366B | 1N5366B | 37.05 | 39 | 40.95 | 30 | 14 | 170 | 1 | 0.5 | 29.7 | 3.1 | 0.65 | 122 | | 1N5367B | 1N5367B | 40.85 | 43 | 45.15 | 30 | 20 | 190 | 1 | 0.5 | 32.7 | 2.8 | 0.7 | 110 | | 1N5368B | 1N5368B | 44.65 | 47 | 49.35 | 25 | 25 | 210 | 1 | 0.5 | 35.8 | 2.7 | 0.8 | 100 | | 1N5369B | 1N5369B | 48.45 | 51 | 53.55 | 25 | 27 | 230 | 1 | 0.5 | 38.8 | 2.5 | 0.9 | 93 | | 1N5370B | 1N5370B | 53.2 | 56 | 58.8 | 20 | 35 | 280 | 1 | 0.5 | 42.6 | 2.3 | 1.0 | 86 | | 1N5371B | 1N5371B | 57 | 60 | 63 | 20 | 40 | 350 | 1 | 0.5 | 45.5 | 2.2 | 1.2 | 79 | | 1N5372B | 1N5372B | 58.9 | 62 | 65.1 | 20 | 42 | 400 | 1 | 0.5 | 47.1 | 2.1 | 1.35 | 76 | | 1N5373B | 1N5373B | 64.6 | 68 | 71.4 | 20 | 44 | 500 | 1 | 0.5 | 51.7 | 2.0 | 1.52 | 70 | | 1N5374B | 1N5374B | 71.25 | 75 | 78.75 | 20 | 45 | 620 | 1 | 0.5 | 56 | 1.9 | 1.6 | 63 | | 1N5375B | 1N5375B | 77.9 | 82 | 86.1 | 15 | 65 | 720 | 1 | 0.5 | 62.2 | 1.8 | 1.8 | 58 | | 1N5377B | 1N5377B | 86.45 | 91 | 95.55 | 15 | 75 | 760 | 1 | 0.5 | 69.2 | 1.6 | 2.2 | 52.5 | | 1N5378B | 1N5378B | 95 | 100 | 105 | 12 | 90 | 800 | 1 | 0.5 | 76 | 1.5 | 2.5 | 47.5 | | 1N5380B | 1N5380B | 114 | 120 | 126 | 10 | 170 | 1150 | 1 | 0.5 | 91.2 | 1.3 | 2.5 | 39.5 | | 1N5381B | 1N5381B | 123.5 | 130 | 136.5 | 10 | 190 | 1250 | 1 | 0.5 | 98.8 | 1.2 | 2.5 | 36.6 | | 1N5383B | 1N5383B | 142.5 | 150 | 157.5 | 8 | 330 | 1500 | 1 | 0.5 | 114 | 1.1 | 3.0 | 31.6 | | 1N5384B | 1N5384B | 152 | 160 | 168 | 8 | 350 | 1650 | 1 | 0.5 | 122 | 1.1 | 3.0 | 29.4 | | 1N5386B | 1N5386B | 171 | 180 | 189 | 5 | 430 | 1750 | 1 | 0.5 | 137 | 1.0 | 4.0 | 26.4 | | 1N5387B | 1N5387B | 180.5 | 190 | 199.5 | 5 | 450 | 1850 | 1 | 0.5 | 144 | 0.9 | 5.0 | 25 | | 1N5388B | 1N5388B | 190 | 200 | 210 | 5 | 480 | 1850 | 1 | 0.5 | 152 | 0.9 | 5.0 | 23.6 | Devices listed in **bold, italic** are **onsemi Preferred** devices. **Preferred** devices are recommended choices for future use and best overall value. - 7. **TOLERANCE AND TYPE NUMBER DESIGNATION:** The JEDEC type numbers shown indicate a tolerance of $\pm 5\%$. - ZENER VOLTAGE (V_Z) and IMPEDANCE (I_{ZT} and I_{ZK}): Test conditions for zener voltage and impedance are as follows: I_Z is applied 40 ±10 ms prior to reading. Mounting contacts are located 3/8" to 1/2" from the inside edge of mounting clips to the body of the diode (T_Δ = 25°C +8°C -2°C). - 9. **SURGE CURRENT** (I_R): Surge current is specified as the maximum allowable peak, non-recurrent square-wave current with a pulse width, PW, of 8.3 ms. The data given in Figure 5 may be used to find the maximum surge current for a square wave of any pulse width between 1 ms and 1000 ms by plotting the applicable points on logarithmic paper. Examples of this, using the 3.3 V and 200 V zener are shown in Figure 6. Mounting contact located as specified in Note 7 (T_A = 25°C +8°C, -2°C). - 10. VOLTAGE REGULATION (ΔV_Z): The conditions for voltage regulation are as follows: V_Z measurements are made at 10% and then at 50% of the I_Z max value listed in the electrical characteristics table. The test current time duration for each V_Z measurement is 40 ±10 ms. Mounting contact located as specified in Note 7 ($T_A = 25^{\circ}\text{C} + 8^{\circ}\text{C}, -2^{\circ}\text{C}$). - 11. MAXIMUM REGULATOR CURRENT (I_{ZM}): The maximum current shown is based on the maximum voltage of a 5% type unit, therefore, it applies only to the B-suffix device. The actual I_{ZM} for any device may not exceed the value of 5 watts divided by the actual V_Z of the device. T_L = 25°C at 3/8" maximum from the device body. †The "G" suffix indicates Pb-Free package or Pb-Free packages are available. Figure 1. Typical Thermal Resistance #### **TEMPERATURE COEFFICIENTS** Figure 2. Temperature Coefficient-Range for Units 3 to 10 Volts Figure 3. Temperature Coefficient-Range for Units 10 to 220 Volts Figure 4. Typical Thermal Response L, Lead Length = 3/8 Inch Figure 5. Maximum Non-Repetitive Surge Current versus Nominal Zener Voltage (See Note 4) Figure 6. Peak Surge Current versus Pulse Width (See Note 4) Figure 7. Zener Voltage versus Zener Current $V_Z = 3.3 \text{ thru } 10 \text{ Volts}$ Figure 8. Zener Voltage versus Zener Current $V_Z = 11 \text{ thru } 75 \text{ Volts}$ Figure 9. Zener Voltage versus Zener Current $V_Z = 82 \text{ thru } 200 \text{ Volts}$ #### **APPLICATION NOTE** Since the actual voltage available from a given Zener diode is temperature dependent, it is necessary to determine junction temperature under any set of operating conditions in order to calculate its value. The following procedure is recommended: Lead Temperature, T_L, should be determined from: $$T_L = \theta_{LA} P_D + T_A$$ θ_{LA} is the lead-to-ambient thermal resistance and P_D is the power dissipation. Junction Temperature, T_J, may be found from: $$T_J = T_L + \Delta T_{JL}$$ ΔT_{JL} is the increase in junction temperature above the lead temperature and may be found from Figure 4 for a train of power pulses or from Figure 1 for dc power. $$\Delta T_{JL} = \theta_{JL} \; P_D$$ For worst-case design, using expected limits of I_Z , limits of P_D and the extremes of T_J (ΔT_J) may be estimated. Changes in voltage, V_Z , can then be found from: $$\Delta V = \theta_{VZ} \, \Delta T_J$$ $\theta_{VZ}\!,$ the Zener voltage temperature coefficient, is found from Figures 2 and 3. Under high power-pulse operation, the Zener voltage will vary with time and may also be affected significantly by the zener resistance. For best regulation, keep current excursions as low as possible. Data of Figure 4 should not be used to compute surge capability. Surge limitations are given in Figure 5. They are lower than would be expected by considering only junction temperature, as current crowding effects cause temperatures to be extremely high in small spots resulting in device degradation should the limits of Figure 5 be exceeded. # SURMETIC 40, AXIAL LEAD CASE 017AA-01 ISSUE O - NOTES: 1. CONTROLLING DIMENSION: INCH 2. LEAD DIAMETER AND FINISH NOT CONTROLLED WITHIN DIMENSION F. 3. CATHODE BAND INDICATES POLARITY | | INC | HES | MILLIN | IETERS | |-----|-------|-------|--------|--------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.330 | 0.350 | 8.38 | 8.89 | | В | 0.130 | 0.145 | 3.30 | 3.68 | | D | 0.037 | 0.043 | 0.94 | 1.09 | | F | | 0.050 | | 1.27 | | K | 1.000 | 1.250 | 25.40 | 31.75 | | DOCUMENT NUMBER: | 98AON21393D | Electronic versions are uncontrolle | • | | |------------------|---------------------------|--|-------------|--| | STATUS: | ON SEMICONDUCTOR STANDARD | accessed directly from the Document versions are uncontrolled except | ' ' | | | NEW STANDARD: | | "CONTROLLED COPY" in red. | | | | DESCRIPTION: | SURMETIC 40, AXIAL LEAD | | PAGE 1 OF 2 | | | ON Semiconductor® | 0 | |-------------------|---| |-------------------|---| DOCUMENT NUMBER: 98AON21393D PAGE 2 OF 2 | ISSUE | REVISION | DATE | |-------|--|-------------| | 0 | RELEASED FOR PRODUCTION. REQ. BY M. LYALL. | 23 SEP 2005 | _ | | | ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. onsemi, ONSEMi., and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. Onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any EDA class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer p #### **PUBLICATION ORDERING INFORMATION** LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com onsemi Website: www.onsemi.com TECHNICAL SUPPORT North American Technical Support: Voice Mail: 1 800-282-9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative